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a b s t r a c t

In this paper, an Uzawa-type augmented Lagrangian contact formulation is presented for modeling
frictional discontinuities in the framework of the X-FEM technique. The kinematically nonlinear contact
problem is resolved based on an active set strategy to fulfill the Kuhn–Tucker inequalities in the normal
direction of contact. The Coulomb’s friction rule is employed to address the stick–slip behavior on the
contact interface through a return mapping algorithm in conjunction with a symmetrized (nested)
augmented Lagrangian approach. A stabilization algorithm is proposed for the robust imposition of the
frictional contact constraints within the proposed augmented Lagrangian framework. Several numerical
examples are presented to demonstrate various aspects of the proposed computational algorithm in
simulation of the straight, curved and wave-shaped discontinuities.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Numerical simulation of frictional contact behavior between
two bodies has enormous applications in broad range of engineer-
ing areas. For instance, in the forming process relative movement
between the tools and material produces normal and tangential
contact forces, which have an important effect on various aspects
of the process, such as the pressing forces, density distribution,
crack nucleation, and residual stresses [1,2]. Moreover, in geo-
mechanical problems the crack growth in compressive zone, such
as fault rapture phenomenon, involves frictional sliding of the
crack edges [3,4]. The shearing forces on crack faces are determi-
nant in the computation of stress intensity factors, rate of
propagation, and direction of propagation; and as a result can
drastically affect the behavior of cracked media. Modeling of
frictional contact in continuum mechanics produces complexity
within the solution, in which two nested Kuhn–Tucker constraints
should be satisfied, including: an outer constraint that accounts for
the contact/separation mode, and an inner constraint that
describes the stick/slip condition on contacting boundaries.

In cases that the contact faces are well defined prior to
beginning of the simulation, the finite element method provides
a natural means for simulating frictional and frictionless contact
problems, see e.g. [5–7]. However, there exist a large variety of
applications where the contacting boundaries nucleate in an

initially undamaged medium and evolve in an undetermined
direction through the simulation, such as mode II and III crack
propagation problems. The eXtended Finite Element Method
pioneered by Moës et al. [8] circumvents the need for conforming
the FE mesh to the evolving boundaries of the discontinuity by
enriching the standard FE approximation with additional discon-
tinuous interpolation functions on the basis of the partition of
unity method [9,10]. The X-FEM requires no update in the mesh
topology, and the only interaction between the FE mesh and the
discontinuity involves selection of the nodal points that must be
enriched [11,12]. A comprehensive review on X-FEM and its
application in a variety of problems in continuum mechanics can
be found in [13,14]. In particular, both primal and dual formula-
tions have been pursued to model frictional contact within the
context of X-FEM. As a pioneering work, Dolbow et al. [15]
employed the LArge Time INcrement (LATIN) method to model
frictional contact on embedded interfaces, in which the solution is
decomposed into two global (linear) and local (possibly nonlinear)
steps, see also [16]. The conventional penalty method has also
been employed to model frictional contact problems with the
X-FEM in the works of Khoei and Nikbakht [17] and Liu and Borja
[18], and is then extended to large sliding-large deformation
contact problems [19,20].

It is well recognized that irrespective of whether one employs
the penalty method or the Lagrangian approach, imposing the
Dirichlet (or stiff Neumann) constraints on embedded interfaces,
such as those arising in X-FEM modeling of frictional contact, may
cause numerical instability in forms of spurious oscillation in the
interfacial traction/flux fields and loss of convergence in local error
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norms [21–23]. Typically, these oscillations are more severe in the
Lagrange multipliers method where contact constraints are
imposed exactly, however, the penalty method exhibits the same
effect when a high-stiff penalty number is employed to impose the
constraints more accurately. In these circumstances, the key
challenge is the verification of the so-called Ladyzhenskaya–
Babuška–Brezzi condition [24,25], which ensures a proper choice
of the discrete space for the Lagrange multipliers in order to avoid
an over-constrained solution. Basically, the issue of verifying the
LBB (or inf-sup) condition is related to the non-conformity of the
X-FEM mesh to the Dirichlet boundaries and stems from the same
challenges encountered when dealing with non-conforming
Dirichlet boundaries in standard finite element frameworks
[26,27]. Ji and Dolbow [21] emphasized that the most convenient
choice of basis for the discrete Lagrange multipliers, those that
naturally arise from the intersections of the interface with the bulk
mesh, triggers oscillation in the Lagrange multipliers field and
cause lack of convergence in local error norms.

So far, both stable and stabilized approaches have been adapted
to the X-FEM models of contact problems to restore stability of
contact stress fields. In general, the discrete Lagrange multipliers
space needs to be coarsened with respect to the underlying mesh
to recover stable Lagrange multipliers on embedded interfaces.
This can be achieved by constructing a stable discrete Lagrange
multipliers space based on the vital vertex algorithm proposed by
Moës et al. [22] and then improved by Bechet et al. [28] and
Hautefeuille et al. [29], or through adopting a mortar-like techni-
que which employs an independent mesh for the discontinuity as
proposed by McDevitt and Laursen [30] and Kim et al. [31]. The
former approach is also extended for large sliding contact by
Nistor et al. [32] and Siavelis et al. [33]. Furthermore, a stable
discrete space can be achieved by an additional enrichment of the
displacement basis with bubble function as given in [23,34]. On
the other hand, the stabilized techniques mostly rely on the
Nitsche’s approach adopted to model frictional contact on
embedded interfaces in [35–37]. It was shown by Stenberg [38]
that the bubble stabilization method is closely related to Nitsche’s
approach. There are also a number of stabilized global–local
approaches which allow an independent discretization of the bulk
and the crack interface, developed in conjunction with the LATIN
strategy in non-planar frictional crack and fatigue crack growth
[39–41]. A stabilized lower order formulation for frictional contact
problems based on the polynomial pressure projection (PPP)
method was proposed by Liu and Borja [42] that is applicable to
both penalty and Lagrange multipliers methods.

In the present study, an augmented Lagrangian formulation is
presented to model frictional discontinuities on the basis of an
extended finite element method. The main idea is to combine the
penalty and Lagrange multipliers methods to inherit the advan-
tages of both approaches, in order to decrease the ill-conditioning

of governing equations and to satisfy the contact constraints more
accurately with finite values of penalty parameters. The proposed
variational formulation is used to incorporate the frictional contact
behavior into the formulation. The finite element equations consist
of two sets of equations; a standard FE equation without the
discontinuity and an enhanced FE equation that captures the
discontinuity and contact contribution via the enriched degrees
of freedom. An active set strategy is employed to resolve the
kinematically nonlinear equations in conjunction with the
Newton–Raphson iterative solution strategy. In order to address
the frictional behavior at the contact interface, the plasticity
theory of friction is employed based on the Coulomb’s friction
law, which is implemented via the standard return mapping
algorithm on the basis of a symmetrized (nested) augmented
Lagrangian approach. Finally, several numerical examples are
simulated to demonstrate various aspects of proposed computa-
tional algorithm, including the combined opening–closing and
sticking–slipping conditions in frictional straight, curved, and
wave-shaped discontinuities.

2. Governing equations of contact problem

Consider a two-dimensional body Ω bounded externally by Γ,
in which the discontinuity Γd separates the body intoΩþ andΩ� ,
as illustrated in Fig. 1. The boundary value problem governing the
static equilibrium equation of the body can be written as

∇:σþb¼ 0 in Ω;

u¼ ~u on Γu ⊂ Γ;

σ n¼ ~t on Γt ⊂ Γ;

ð1Þ

where ∇ is the gradient operator, σ is the Cauchy stress tensor, b is
the body force vector, ~u is the prescribed displacement on Γu, and
~t is the prescribed traction acting on Γt whose unit outward
normal vector is denoted by n. It is assumed that Γu [ Γt ¼Γ and
Γu \ Γt ¼∅.

The notion of ‘slave’ and ‘master’ bodies of the classical contact
mechanics can also be applied here, such that the master and slave
bodies in the current case pertain to each side of the discontinuity
Γd, where Ωþ is assigned to the slave side and Ω� to the master
side. On account of the frictional contact condition along the
discontinuity interface Γd, the above mentioned boundary value
problem is augmented by the following condition on the surface of
discontinuity

σ n¼ t on Γd; ð2Þ

where n is the unit normal vector to the master side of the
discontinuity surface, i.e. normal on Γd pointing toward Ωþ , and t
is the contact traction acting on the master side of the disconti-
nuity. Note that the contact traction is continuous across Γd. In
other words, the contact traction acting on the surface of the slave
body is �t, essentially the same with t but in opposite direction.

The space of kinematically admissible displacement fields (trial
functions) U is defined as

U ¼ fu A ℋ1 ju¼ ~u on Γu and u discontinuous on Γdg; ð3Þ

and the space of kinematically admissible to zero fields δU (test
functions) as

δU ¼ fδuA ℋ1 jδu¼ 0 on Γu and δu discontinuous on Γdg; ð4Þ

where the space ℋ1 is related to the regularity of the kinematic
fields that basically allows for discontinuous functions across the
discontinuity [43]. Treating the discontinuity as an external
boundary for Ωþ and Ω� , the variational formulation associated
with the above mentioned contact boundary value problem can be

Fig. 1. Definition of a contact problem; The discontinuity Γd separates the domain
Ω into the slave (Ωþ ) and master (Ω� ) bodies.
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