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a b s t r a c t

A new finite element model based on the coupled displacement field and the tapering functions of the

beam is formulated for transverse vibrations of rotating Timoshenko beams of equal strength. In the

coupled displacement field, the polynomial coefficients of transverse displacement and cross-sectional

rotation are coupled through consideration of the differential equations of equilibrium. The tapering

functions of breadth and depth of the beam are obtained from the principle of equal strength in the

longitudinal direction of the beam. After finding the displacement functions using the tapering

functions, the stiffness and mass matrices are expressed by using the strain and kinetic energy

equations. A semi-symbolic computer program in Mathematica is developed and subsequently used to

evaluate the new model. The results of the illustrative example regarding the problem indicated in the

title of this paper are obtained and compared with the results found from the models created in

ABAQUS. Very good agreement is found between the results of new model and the other results.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The effects of shear deformation and rotary inertia are taken
into account in Timoshenko beam theory [1] which is expressed
by two coupled partial differential equations. For vibration of
tapered beams, the aforementioned two coupled equations have
variable coefficients. Furthermore, consideration of the rotational
effects on the beam vibrations causes addition of a term with
variable coefficient in these equations. Therefore, to find the exact
solutions of these equations is generally difficult. Selecting a
number of cross-section variation functions, the problem has been
solved mainly by numerical or approximate methods such as the
dynamic discretization technique [2], the spline interpolation
technique [3], the transfer matrix method [4], and the method of
Frobenius [5]. A carefully selected sample of the literature on the
finite element studies for uniform and tapered rotating/nonrotat-
ing Timoshenko beams are given in author’s previous study [6]
which reports that there is no available shape functions
incorporated with the taper parameters based on the breadth
and/or depth of the tapered beam. Yardimoglu [6] derived the
shape functions, considering the functions of breadth and depth of
the tapered beam as power function for vibration analysis of
rotating Timoshenko beam.

Hence, the objective of this paper is to present a novel finite
element model based on the coupled displacement field incorporat-

ing the taper functions of breadth and depth of the Timoshenko
beam of equal strength in the longitudinal direction of the beam. The
new finite element model has exact stiffness matrix, but approx-
imate mass matrix owing to the usage of static equilibrium
condition as in Refs. [7,8]. Petyt [9] reported that the usage of the
static equilibrium condition in obtaining an approximate solution
for the dynamic response requires an increase in the number of
elements needed for a desired accuracy, but this is fully compen-
sated by the simplicity of the mathematical analysis it provides. The
new model is verified for out-of-plane vibration of rotating tapered
Timoshenko beam of equal strength by comparison of the results
obtained from the semi-symbolic computer program developed in
Mathematica with the results found from the finite element models
created in ABAQUS. In order to show the accuracy of the present
new model clearly, the results are given in tabular form.

2. Formulation of the breadth and depth of the beam

Governing equation of equilibrium of a beam under distributed
axial load q(z) is given by Bickford [10] as

d

dz
AðzÞsðzÞ½ �þqðzÞ ¼ 0 ð1Þ

The notation used throughout this paper is listed in the
Nomenclature. For a rotating beam with constant angular velocity
O, distributed axial load is written as

qðzÞ ¼ rAðzÞO2z ð2Þ
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In order to obtain the cross-sectional area function of the beam
of equal strength, normal stress s(z) in Eq. (1) is considered as
constant, namely s(z)¼s0. Thus substituting Eq. (2) into Eq. (1),
and then solving the equation yields,

AðzÞ ¼ A0 expð�rz2Þ ð3Þ

where

r¼ 0:5rO2=s0 ð4Þ

Now, the breadth and depth of the beam depending on the
parameters m and n which satisfy the relation r¼m+n are
selected as follows:

bðzÞ ¼ b0 expð�mz2Þ ð5Þ

hðzÞ ¼ h0 expð�nz2Þ ð6Þ

3. Formulation of the finite element displacement functions

The differential equations of motion for a nonuniform
Timoshenko beam are given in Ref. [11]. The homogeneous form
of these equations are written as follows:

dMðzÞ

dz
þVðzÞ ¼ 0 ð7Þ

dVðzÞ

dz
¼ 0 ð8Þ

where

MðzÞ ¼ EIðzÞ
dyðzÞ

dz
ð9Þ

VðzÞ ¼ kAðzÞG
dv

dz
�yðzÞ

� �
ð10Þ

Considering the constant shear force given by Eq. (8) in Eq. (7),
bending moment is obtained by integration as

MðzÞ ¼ C1zþC2 ð11Þ

The cross-sectional rotation of the beam is found by substitut-
ing Eq. (11) into Eq. (9), and integrating as

yðzÞ ¼
Z

1

EIðzÞ
ðC1zþC2Þdz ð12Þ

Transverse displacement of the beam is expressed by sub-
stituting Eq. (12) along with Eqs. (9) and (10) into Eq. (7), and
integrating as

vðzÞ ¼

Z
yðzÞ�

1

kAðzÞG

d

dz
EIðzÞ

dyðzÞ
dz

� �� �
dz ð13Þ

In order to express the displacement functions depending on
the functions of the breadth and depth of the beam formulated in
Eqs. (5) and (6), the area moment of inertia of the cross-section
about x axis can be written as

IðzÞ ¼ Ixx0 expð�pz2Þ ð14Þ

where p¼m+3 n. Then, substituting Eq. (14) into Eq. (12),
and integrating yields

yðz,tÞ ¼ y0ðtÞþy1ðtÞf1ðzÞþy2ðtÞf2ðzÞ ð15Þ

where

f1ðzÞ ¼ expð�pz2Þ ð16aÞ

f2ðzÞ ¼ erfið
ffiffiffi
p
p

zÞ ð16bÞ

Also, substituting Eqs. (3), (14), and (15) into Eq. (13),
and integrating yields

vðz,tÞ ¼ v0ðtÞþv1ðtÞg1ðzÞþv2ðtÞg2ðzÞþv3ðtÞg3ðzÞ ð17Þ

Nomenclature

A(z), A0 cross-sectional area of the beam and its coefficient
b(z), b0 breadth of the beam and its coefficient
[B] polynomial coefficients coupling matrix
{cv} polynomial coefficient vector of transverse displace-

ment
{cy} polynomial coefficient vector of cross-sectional rota-

tion
[C] element displacement-polynomial coefficient matrix
C1,C2 constants of integration
erfi(z) imaginary error function of z

E,G elastic modulus and shear modulus, respectively
h(z),h0 depth of the beam and its coefficient
I(z),Ixx0 area moments of inertia of the beam cross-section

about x and its coefficient
k shear coefficient
[K] global elastic stiffness matrix
[Ke] element elastic stiffness matrix
L length of the beam
m breadth taper parameter
M(z) bending moment about x axis
[M] global mass matrix
[Me] element mass matrix
n depth taper parameter
N number of element
p taper parameter for area moments of inertia of the

cross-section
P(z) centrifugal force

[Pv] polynomial vector for transverse displacement
[Py] polynomial vector for cross-sectional rotation
q(z) distributed axial load
{q} global displacement vector
{qe} element displacement vector
r taper parameter for cross-sectional area of the beam
rg radius of gyration of the root cross-section of the

beam about x axis
SF safety factor
[S] global geometric stiffness matrix
[Se] element geometric stiffness matrix
T kinetic energy
Ue,Ug elastic and geometric strain energies
v(z,t) transverse displacement
v0(t),v1(t),v2(t),v3(t) polynomial coefficients of the transverse

displacement
V(z) shear force in y direction
zr co-ordinate of the root of the beam
zt ¼zr+L co-ordinate of the tip of the beam
y(z,t) cross-sectional rotation about x axis
y0(t),y1(t),y2(t) polynomial coefficients of the cross-sectional

rotation
s0 ¼sY/SF, allowable stress
sY yield stress
s(z) normal stress
r density
o natural circular frequency of beam
O rotational speed
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