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a b s t r a c t

A point interpolation method with locally smoothed strain field (PIM-LS2) is developed for mechanics

problems using a triangular background mesh. In the PIM-LS2, the strain within each sub-cell of a nodal

domain is assumed to be the average strain over the adjacent sub-cells of the neighboring element

sharing the same field node. We prove theoretically that the energy norm of the smoothed strain field in

PIM-LS2 is equivalent to that of the compatible strain field, and then prove that the solution of the PIM-

LS2 converges to the exact solution of the original strong form. Furthermore, the softening effects of

PIM-LS2 to system and the effects of the number of sub-cells that participated in the smoothing

operation on the convergence of PIM-LS2 are investigated. Intensive numerical studies verify the

convergence, softening effects and bound properties of the PIM-LS2, and show that the very ‘‘tight’’

lower and upper bound solutions can be obtained using PIM-LS2.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

To solve engineering problems, powerful numerical methods
have been developed, such as the Finite Element Methods (FEM)
[1–4], Finite Difference Methods [5,6], Finite Volume Methods
(FVM) [7,8], and recently Meshfree Methods [9–19]. These
methods and techniques not only provide solution tools for many
engineering problems but also extend our minds in the quest for
even more effective and robust computational methods.

In these methods, the FEM is the most widely used reliable
numerical approach for engineering problems. However, the fully
compatible FEM based on the standard Galerkin weak form is
‘‘overly-stiff’’, hence resulting in a very poor stress solution,
especially when a linear displacement field and a triangular mesh
are used [1,2]. Although some higher order and mixed models of
FEM are used to obtain good properties, it obviously adds the
extra computing cost and computing complexity.

On the other hand, meshfree methods offer attractive alter-
natives to the FEM for many engineering problems, where the
treatments on both field function approximation and integration
of the weak form are often different from those in the FEM (see,

e.g., [17,18]). In some of the meshfree methods the integration is
node-based, and the models are often too ‘‘soft’’, and even
spatially unstable. A strain smoothing technique has been applied
by Chen et al. [20] to stabilize the nodal integrated Galerkin
meshfree methods. By combining the existing FEM and the strain
smoothing technique, Liu et al. [21–28] developed some effective
methods to provide the softening effects to system for mechanical
problems. The node-based smoothed PIM (NS-PIM) is first
formulated using PIM shape functions [21]. It was found that
NS-PIM can produce much better stress solution, is much more
tolerant to mesh distortion, works very well for triangular
elements and more importantly it provides upper bound solution
in energy norm. Recently, a very effective edge-based smoothed
FEM (ES-FEM) [27] has been formulated. The ES-FEM not only
produces accurate solution but also is temporally stable and
without any spurious modes and hence works very well for
dynamic problems.

These works show that the softening effect from smoothing
operation will propositionally depend on the number of sub-
domains that participated in the smoothing operation. It is known
that there are no smoothed operations in the FEM, and the system
is ‘‘overly-stiff’’, which results in a lower bound solution in energy
norm. In the NS-PIM, the smoothed domain used for strain re-
construction is an entire nodal domain that includes much more
sub-cells participated in smooth operation. This results in a very
‘‘loose’’ upper bound solution [28,29] even if a higher order
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displacement model is used. In the ES-PIM, on the other hand, the
number of sub-cells that participated in smoothing operation is
obviously less than that from NS-PIM. Hence, ES-PIM produces a
very high accurate solution. Therefore, the bound property and
convergence will be strongly determined by the number of sub-
cells that participated in the smoothing operation.

Recently, numerical methods with an adjustable parameter a
were developed [29–31] to look for ‘‘tight’’ lower and upper
bound solutions. However, the preferable a is usually problem
dependent and mesh dependent, and hence requires additional
efforts to determine for a practical problem.

To obtain a very tight bound solution and to avoid the
difficulty to look for preferable a, we construct a point interpola-
tion method with locally smoothed strain field (PIM-LS2) using a
triangular mesh. The aim of this work is to investigate the effects
of the number of sub-domains that participated in the smoothing
operation on the convergence. Special attention was paid to how
to obtain the very ‘‘tight’’ lower and upper bound solutions using
PIM-LS2.

The paper is outlined as follows. Section 2 briefs the linear
elasticity and NS-PIM. The idea of the PIM-LS2 is presented in
Section 3. The convergence and bound properties of the PIM-LS2
are presented and theoretically proven in Section 4. In Section 5,
softening effects of PIM-LS2 are discussed, and numerical
examples are presented in Section 6. Conclusions are drawn in
Section 7.

2. Brief on basic equations

2.1. Brief on basic equations of linearity elasticity [1]

Consider a 2D static elasticity problem governed by the
equilibrium equation in the domain O bounded by G(G¼Gu+Gt,
Gu\Gt¼0) as

LT
drþb¼ 0 in O ð1Þ

where Ld is a matrix of differential operators defined as

Ld ¼
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where rT ¼ ðs11,s22,s12Þ is the vector of stresses, bT
¼ ðb1,b2Þ the

vector of body forces. The stresses relate the strains via the
generalized Hook’s law

r¼De ð3Þ

where D is the matrix of material constants [17] and
eT ¼ ðe11,e22,2e12Þ is the vector of strains given by

e¼ Ldu ð4Þ

Essential boundary conditions are

u¼ u0 on Gu ð5Þ

where uT ¼ ðu1,u2Þ is the vector of the displacement and u0 is the
vector of the prescribed displacements on the essential boundary
Gu. In this paper, we consider only homogenous essential
boundary conditions u0 ¼ 0.

Natural boundary conditions are

LT
nr¼ T on Gt ð6Þ

where T is the vector of the prescribed tractions on the natural
boundary Gt, and Ln is the matrix of unit outward normal, which

can be expressed as

Ln ¼
nx1

0 nx2

0 nx2
nx1

" #T

ð7Þ

2.2. Briefing on the NS-PIM [28]

In the node-based smoothed PIM (NS-PIM), the problem
domain is first discretized by a set of background triangular cells
as shown in Fig. 1. The displacements in a cell are approximated
using PIM shape functions

uðxÞ ¼
X
iAne

UiðxÞdi ð8Þ

where ne is the set of nodes of the local support domain
containing x which is in general beyond the cell, di is a vector
of displacements at this set of nodes, and

UiðxÞ ¼
jiðxÞ 0

0 jiðxÞ

" #
ð9Þ

is the matrix of the shape function for node i, which is constructed
generally using the PIM procedure and hence is of Delta function
property.

By connecting sequentially the mid-edge-point of a background
cell to its centroids, the problem domain O is divided into smoothing
domains Ok containing node k, as shown in Fig. 1. NS-PIM uses
constant strain for each smoothing domain as follows [20]:

ek � eðxkÞ ¼
1

Ak

Z
Ok

~eðxÞdO ð10Þ

where Ak¼
R
Ok dO is the area of smoothing domain for node k, and

~eðxÞ ¼ Ldu is the compatible strain.
The assumed displacement u and the corresponding assumed

strains e satisfy the generalized smoothed Galerkin weak formZ
O
deT
ðuÞDeðuÞdO�

Z
O
duTbdO�

Z
Gt

duTTdG¼ 0 ð11Þ

Substituting Eqs. (8) and (10) into Eq. (11) yields the
discretized system equation

K d¼ f ð12Þ

Remark 1. (Upper bound property of NS-PIM [28,29]): For any
practical model with a reasonable number of elements, the strain
energy obtained using the NS-PIM is not less than the exact strain
energy.

kk

k

Field node;   Mid-edge-point;   Centroid of triangle

Fig. 1. Triangular background elements and the nodal smoothing domains in

NS-PIM.
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