Finite Elements in Analysis and Design 99 (2015) 1-15

Contents lists available at ScienceDirect

Finite Elements in Analysis and Design

journal homepage: www.elsevier.com/locate/finel

Nonlinear multiphysics finite element code architecture in object

oriented Fortran environment

ES

Zifeng Yuan, Jacob Fish

Columbia University, New York, NY, United States

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 28 June 2014

Received in revised form

4 December 2014

Accepted 26 January 2015
Available online 21 February 2015

Keywords:

Finite element
Object-oriented programming
Fortran environment

The objective of the present manuscript is to describe a new architecture of the nonlinear multiphysics
finite element code in object oriented Fortran environment hereafter referred to as FOOF. The salient
features of FOOF are reusability, extensibility, and performance. Computational efficiency stems from the
intrinsic optimization of numerical computing intrinsic to Fortran, while reusability and extensibility is
inherited from the support of object-oriented programming style in Fortran 2003 and its later versions.
The shortcomings of the object oriented style in Fortran 2003 (in comparison to C+ + ) are alleviated by
introducing the class hierarchy and by utilizing a multilevel programming style.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The finite element analysis (FEA) software architecture is being
constantly customized, upgraded and extended due to rapid
developments of FEA capabilities, including new elements, local
and nonlocal constitutive laws, contact and cohesive elements,
and new multiphysics and multiscale capabilities. Adding new
features or modifying existing codes is notoriously complex and
error-prone. One of the key challenges for FEA code developers is
to reduce the cost of developing and implementing new features.
Thus, code reusability and extensibility are among the most
important attributes of the FEA code structure. Reusability mea-
sures the ability that the FEA code to be used for other purposes
with minor to no modifications. Extensibility means that the
software can be easily extended and that the modification will
have little to no effect on existing functionalities. Moreover, the
FEA code developing process should be able to accommodate a
teamwork.

The FEA codes, like programs in other areas, consist of data
structures and algorithms. The data structure is a particular way of
storing and organizing data blocks, while the algorithm is a step-
by-step process which operates on data structures. Throughout the
history of FEA software, data structures and algorithms have not
significantly changed due to the fact that at the core, FEA has
always been and still is the numerical solution of partial differ-
ential equations. However, the programming style that defines

* Corresponding author.
E-mail address: fishj@columbia.edu (J. Fish).

http://dx.doi.org/10.1016/j.finel.2015.01.008
0168-874X/© 2015 Elsevier B.V. All rights reserved.

specific rules aimed at organizing data structures and algorithms
has kept evolving over time.

For over 30 years since the inception of the finite element
method, the FEA code structure was based on so-called procedure-
oriented programming (POP) style mostly in the environment of
FORTRAN 77. In the POP style, the FEA code is organized as a
collection of relatively small procedures known as subroutines or
functions. Each procedure consists of several commands that
describe a particular algorithm. These procedures may have
internal dependencies, i.e. procedures may be called by the other
procedures. The complex data structures can be globally accessed
throughout the FEA program. The POP programming style is
schematically illustrated in Fig. 1.

FEA programs written in the POP style are usually tied to a
specific algorithm. The lack of flexibility is magnified with increase
in the number of subroutines. This lack of flexibility gives rise to
the following shortcomings [1,2]:

(1) One has to understand the whole program structure before it
can be modified;

(2) The dependencies between the subroutines are hidden and
difficult to detect;

(3) It is hard to implement a new algorithm;

(4) The modification of subroutines may have unpredictable side
effects;

(5) It is difficult for teamwork.

The philosophy behind the object-oriented programming
(OO0P) is based on the fact that the subroutines can be associated
with data structures they operate on [1]. This self-contained entity


www.sciencedirect.com/science/journal/0168874X
www.elsevier.com/locate/finel
http://dx.doi.org/10.1016/j.finel.2015.01.008
http://dx.doi.org/10.1016/j.finel.2015.01.008
http://dx.doi.org/10.1016/j.finel.2015.01.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2015.01.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2015.01.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2015.01.008&domain=pdf
mailto:fishj@columbia.edu
http://dx.doi.org/10.1016/j.finel.2015.01.008

2 Z. Yuan, J. Fish / Finite Elements in Analysis and Design 99 (2015) 1-15

Procedure-oriented programming

Data
structure 1
Data
structure 2

Subroutine 1

Subroutine 2

Subroutine m

Fig. 1. Procedure-oriented programming: isolated subroutines with globally accessed
data structures.

Object-oriented programming

Data
structure

Class

Subroutine 1

Subroutine n

Fig. 2. Object-oriented programming: one object with its own data structure
and subroutines.

Object-oriented programming

Class
Message 1 Subroutine 1
structure
Message n Subroutine n

Fig. 3. The encapsulation of OOP: internal subroutines are called by sending messages.

Box 1-A general pseudo code for the derived type in Fortran.

Box 2-An example of the definition of the derived type in Fortran.

MODULE example_mod
TYPE:: example_type
INTEGER(KIND=4):: i
REAL(KIND=8):: r
CONTAINS
PROCEDURE:: set_i= > set_example_type_i
PROCEDURE:: set_r= > set_example_type_r
END TYPE example_type
CONTAINS
SUBROUTINE set_example_type_i(me, i_arg)
CLASS(example_type):: me
INTEGER(KIND=4),INTENT(IN):: i_arg
me%i=i_arg
RETURN
END SUBROUTINE set_example_type_i
SUBROUTINE set_example_type_r(me, r_arg)
CLASS(example_type):: me
REAL(KIND=8),INTENT(IN):: r_arg
me%r=r_arg
RETURN
END SUBROUTINE set_example_type_r
END MODULE example_mod

Box 3-An example of sending a message to derived type in Fortran

PROGRAM example
USE example_mod
TYPE(example_type):: eg
CALL eg%set_i(1)
CALL eg%set_r(1.0D0)
STOP

END PROGRAM

MODULE mod_name
TYPE:: type_name
[define data structure]
CONTAINS
[define the interface of bounded subroutines]
END TYPE type_name
CONTAINS
[implementation of bounded subroutines]
END MODULE mod_name

is called class, and objects are instances of a class [3]. For example,
species of animals can be treated as a class, while a single animal
of this species is an object of this class. Compared with the POP
style, which requires developers to manage the interaction
between the separate data structures and subroutines, the OOP
encapsulates the specific kinds of data with the specific subrou-
tines [4]. Accordingly, the basic concept of the OOP is abstraction
that abstracts essential immutable qualities of the components as
well as their methods into objects [2]. An object contains the data
structure and bounded subroutines as illustrated in Fig. 2.

The OOP style requires that the data encapsulated in the object
could not be accessed by external subroutines. The external sub-
routines can communicate with an object by sending messages only.
In general, a message is a call of the bounded subroutines [5]. The
mechanism of communication is schematically illustrated in Fig. 3.

The OOP style organizes different parts of the code as a set of
objects with clear interfaces [6]. A well-defined object with its
data structure and subroutines improves the understanding of the



Download English Version:

https://daneshyari.com/en/article/514119

Download Persian Version:

https://daneshyari.com/article/514119

Daneshyari.com


https://daneshyari.com/en/article/514119
https://daneshyari.com/article/514119
https://daneshyari.com/

