
Author's Accepted Manuscript

"On-Off-On" Fluorescence Sensor Based on g-C₃N₄ Nanosheets for Selective and Sequential Detection of Ag^+ and S^{2-}

Shan Wang, Qian Lu, Xu Yan, Mingming Yang, Ranfeng Ye, Dan Du, Yuehe Lin

PII:	80039-9140(17)30294-1
DOI:	http://dx.doi.org/10.1016/j.talanta.2017.03.004
Reference:	TAL17349

To appear in: Talanta

Received date: 28 December 2016 Revised date: 23 February 2017 Accepted date: 2 March 2017

Cite this article as: Shan Wang, Qian Lu, Xu Yan, Mingming Yang, Ranfeng Ye, Dan Du and Yuehe Lin, "On-Off-On" Fluorescence Sensor Based on g-C $_3$ N Nanosheets for Selective and Sequential Detection of Ag⁺ and S²⁻, *Talanta*. http://dx.doi.org/10.1016/j.talanta.2017.03.004

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain "On-Off-On" Fluorescence Sensor Based on $g-C_3N_4$ Nanosheets for Selective and Sequential Detection of Ag^+ and S^{2-}

Shan Wang^{1,2}, Qian Lu¹, Xu Yan¹, Mingming Yang¹, Ranfeng Ye¹, Dan Du¹,

Yuehe Lin^{1*}

¹School of Chemistry and Chemical Engineering of Xianyang Normal University, Xianyang, 712000, PR China

²Department of Mechanical and Material Engineering, Washington State University, Pullman, Washington 99163, United States

NISCÍ

yuehe.lin@wsu.edu

Abstract:

Detection of silver (Ag⁺) and sulfide (S²⁻) ions is important because their presence in large amounts can cause many diseases. In this study, a novel, simple, "on-off-on" fluorescence sensor based on g-C₃N₄ nanosheets for sequential detection of Ag⁺ and S²⁻ was designed. The fluorescence signal of the g-C₃N₄ nanosheets is quenched because Ag⁺ chelates with the N of the g-C₃N₄ nanosheets, leading to photoinduced electron transfer from the sheets to Ag⁺. After adding S²⁻, the fluorescence of the g-C₃N₄ nanosheets is recovered due to formation of Ag₂S, which activates the fluorescence of the g-C₃N₄ nanosheets. The recovery efficiency was found to increase with increasing concentrations of S²⁻, with linear calibration ranging from 0 nmol /L to 30 nmol/L. Other potentially interfering species, such as SO₄²⁻, PO₄³⁻, Download English Version:

https://daneshyari.com/en/article/5141247

Download Persian Version:

https://daneshyari.com/article/5141247

Daneshyari.com