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Large amplitude free vibration analysis of uniform, slender and isotropic beams is investigated through a
relatively simple finite element formulation, applicable to homogenous cubic nonlinear temporal equation
(homogenous Duffing equation). All possible boundary conditions where the von-Karman type nonlinear-
ity is applicable, where the ends are axially immovable are considered. The finite element formulation
begins with the assumption of the simple harmonic motion and is subsequently corrected using the
harmonic balance method and is general for the type of the nonlinearity mentioned earlier. The nonlinear
stiffness matrix derived in the present finite element formulation leads to symmetric stiffness matrix as
compared to other recent formulations. Empirical formulas for the nonlinear to linear radian frequency
ratios, for the boundary conditions considered, are presented using the least square fit from the solutions
of the same obtained for various central amplitude ratios. Numerical results using the empirical formulas
compare very well with the results available from the literature for the classical boundary conditions such
as the hinged–hinged, clamped–clamped and clamped–hinged beams. For the beams with nonclassical
boundary conditions such as the hinged–guided and clamped–guided, the numerical results obtained,
apparently for the first time and are in line with the physics of the problem.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Large amplitude free vibration analysis of beams considering ge-
ometric nonlinearity has been investigated by various researchers
using either the analytical or the approximate continuum and nu-
merical methods. Woinowsky-Krieger [1] investigated the problem
of the hinged–hinged beams with axially immovable ends using the
elliptic integral solution. Evensen [2] studied the nonlinear vibra-
tions of beams using the perturbation method. Srinivasan [3] used
the Ritz–Galerkin method to study the nonlinear vibration response
of simply supported beams and plates. Ray and Bert [4] used the
Ritz–Galerkin method to study the large amplitude free vibrations
of beams with pinned ends. The first finite element (FE) formulation
for this problem has been developed by Mei [5–7], wherein the ax-
ial tensile force developed in the beam is assumed to be constant
in an element, but varying from element to element, which is not
the true situation. Venkateswara Rao et al. [8,9] formulated the large
amplitude free vibrations of beams and plates by linearizing the
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quadratic terms in the strain displacement relation, and neglected
the contribution of the axial displacement. However, the earlier FE
formulations gave acceptably accurate results for the uniform slender
beams as well as for the thin circular and rectangular plates. Effect
of the axial displacement has been considered by Raju et al. [10]
and also shown that the linearization of strain–displacement relation
amounts to the averaging of the nonlinear stretching force in the
beam.

Prathap and Bhashyam [11], and Sarma and Varadan [12] con-
cluded that the above discussed formulations are incorrect, since
the axial displacement is neglected and the axial stretching force is
averaged. In all the above formulations the assumptions of the sim-
ple harmonic motion (SHM) is used and as a result the equation of
motion is satisfied only at the instant of maximum amplitude.

Kapania and Raciti [13] studied the nonlinear free vibrations of
the composite beams. In this formulation they reduced the dynamic
FE matrix equation to a scalar equation by using the linear mode
shapes obtained with the assumption of the SHM. The scalar equa-
tion thus obtained was solved by the perturbation method to obtain
the nonlinear to linear frequency ratios. However, in this formula-
tion the out-of-plane equilibrium equations are not exactly satisfied.
Singh et al. [14] studied the problem by solving iteratively the
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Nomenclature

a central amplitude of the vibrating beam
A cross-section area of beam
E Young's modulus
I area moment of inertia
[ke] element stiffness matrix
[K] assembled stiffness matrix
l element length
L length of the beam
m mass per unit length
[m] element mass matrix
[M] assembled mass matrix
r radius of gyration (r =

√
I/A)

u axial displacement
U strain energy
w lateral displacement
T kinetic energy

x axial coordinate
�1 → �8 generalized coordinates
�x axial strain
� eigenvalue (frequency parameter = m�2L4/EI)
�x curvature
� radian frequency
� eigenvector (mode shape of vibration)

Subscripts

L linear
NL nonlinear
H harmonic

Superscript

( )′ differentiation with respect to x
[ ]T transpose of a matrix

dynamic finite element matrix equation such that the equations
corresponding to the axial and out-of-plane directions are exactly
satisfied. The converged eigenvector obtained using the SHM as-
sumption is used for reducing the dynamic FE matrix equation itera-
tively to a scalar homogenous cubic nonlinear (homogenous Duffing
equation), which is solved by the direct numerical integration (DNI).
In this formulation the final stiffness matrix is unsymmetric due to
the coupling of the axial and transverse displacement, and the solu-
tion of the eigenvalue problem involving unsymmetric matrix is not
that attractive when compared to the symmetric one as very effi-
cient and foolproof algorithms are available to solve the eigenvalue
problem containing symmetric matrices [19].

Chen et al. [20] studied the nonlinear vibration of plane structures
using the finite element and incremental harmonic balance (IHB)
method. Note that the IHB method presented in Ref. [20] is a combi-
nation of incremental method (Newton–Raphson method) with the
harmonic balance method (HBM, Ritz–Galerkin averaging method).
This formulation is applied to predict the fundamental resonance,
super and subharmonic response and combination of resonance of
plane structures. Leung et al. [21] presented a computational algo-
rithm to construct the back-bone curve of an elastic body in large
amplitude vibration in which the amplitude of the structure is ex-
pressed in terms of harmonic components. In this formulation the
increment is applied to the harmonic coefficients of the displacement
amplitudes to find new equilibrium states along the back-bone curve.
The researchers [20,21] primarily studied the amplitude–frequency
response of the structures.

Researchers in Refs. [22–27] discussed the field consistent strain
formulations of the displacement based finite element formulation
where authors [26] emphasized that if the assumed strain field are
not variationally correct FE procedure can lead to poor convergence
and spurious stress oscillations. Reddy [22] discussed the possible
locking effects arising in beams due to the assumed inconsistent
displacement field variationwhen the nonlinear strain–displacement
relations of von-Karman type are considered.

In the present study, the large amplitude free vibration analysis
of the uniform, slender and isotropic beams is investigated with
all possible boundary conditions on w and both the ends of the
beam constrained to move axially, resulting in von-Karman type
strain–displacement relation. The present formulation considers the
nonlinear strain–displacement relation without any approximation.
Note that there are a number of continuum and FE formulations
where the axial deformation is considered indirectly using the
tension developed in the beam due to large deflections. In some
formulations the axial deformation is neglected and in other the

axial deformation is directly considered as in the present formula-
tion. An exhaustive study is carried out for the hinged–hinged (H–H),
clamped–clamped (C–C), clamped–hinged (C–H), clamped–guided
(C–G) and hinged–guided (H–G) beams starting with the SHM as-
sumption. The guided boundary condition is of two types and are
denoted by G1 and G2, where G1 represents that the lateral displace-
ment and the rotation are not constrained and in G2, there is no
constraint to lateral displacement while the rotation is constrained.
The final solution in terms of ratios of the nonlinear to linear ra-
dian frequencies for several central amplitude ratios are obtained by
applying the harmonic balance method [16] to correct the error in-
volved in the assumption of the SHM for the abovementioned bound-
ary conditions. It may be emphasized that the matrices involved in
the eigenvalue problem are symmetric in the present FE formula-
tion. Numerical results for the classical boundary conditions H–H,
C–C and C–H beams are available in the literature and the present
results compare very well with those and at the same time the cor-
responding results for the nonclassical boundary conditions C–G1,
C–G2, H–G1 and H–G2 beams are not readily available and are pre-
sented perhaps for the first time. The simplicity of the present FE
formulation lies in getting the realistic solution using the HBM [16]
to correct for the assumption of the SHM contrary to the procedures
followed in the Refs. [13,14].

2. Finite element formulation

The nonlinear strain–displacement relation of the beam with the
axially immovable ends are given by

�x = du
dx

+ 1
2

(
dw
dx

)2

(1)

and

�x = d2w

dx2
(2)

Note that Eq. (1) is valid for small strain butmoderately large rotation
and transverse deflection (of the order of characteristic dimension
of the cross-section) of the beam [22,28].

The beam is divided into a number of finite elements of equal
length l. The strain energy (U) of the element is

U = EA
2

∫ l

0
�2x dx + EI

2

∫ l

0
�2

x dx (3)
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