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This paper describes a new method of calculating accurately and efficiently dynamic response sensitivity
and Hessian matrix of planar frames subjected to earthquake excitation. The formulas for sensitivity and
Hessian matrix are derived by direct differentiation. An efficient algorithm to calculate dynamic response
sensitivity and Hessian matrix is formulated based on finite element method and Newmark-� method.
The first and second derivatives of dynamic responses can be derived simultaneously with only a single
dynamics analysis. Two numerical examples are demonstrated with the newly developed method and
the central-difference method. The results show that compared with the central-difference method, the
new method proposed in this paper is highly accurate and more efficient.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Response sensitivity analysis of structures subjected to dynamic
loading deals with calculation of first derivatives of dynamic re-
sponse with respect to the design variables, and response Hessian
matrix analysis deals with calculation of second derivatives of dy-
namic response with respect to the design variables. These deriva-
tives are often used in the solution of various problems. In structural
optimal design, they are often required to select a search direction
in some mathematical programming methods, e.g. Newton's Method
and Quasi-Newton's Methods [1]. Many methods of calculating dy-
namic response sensitivity have been developed [2–5]. Accuracy and
efficiency of these methods are also discussed in many studies [6–8].
Methods of dynamic response sensitivity for discretized systems are
mainly divided into three categories [9]: finite-difference methods,
analytical methods and “semi-analytical” methods. Although many
researchers have calculated dynamic response sensitivity, there is
little work published on dynamic response Hessian Matrix analysis.
Dynamic response Hessian Matrix analysis, i.e., second derivatives of
dynamic response with respect to the design variables, is more diffi-
cult andmore complicated than the sensitivity analysis and therefore
computationally expensive. However, the efficiency of the structural
optimization using both first derivative and second derivative can
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be greatly improved when the gradient and Hessian matrix can be
calculated accurately and efficiently.

The purpose of this paper is to develop a new method for cal-
culating accurately and efficiently dynamic response sensitivity and
Hessian matrix of planar frames subjected to earthquake excita-
tion. The new method is based on the finite element method and
the Newmark-� method [10]. The dynamic responses include node
displacements, node accelerations, node velocities, interstory drifts,
node forces and cross-sectional internal forces at the middle of el-
ement. The paper is arranged as follows. In Section 2, the first and
second derivatives of planar frame stiffness, mass and damping ma-
trix with respect to structural design variables are calculated based
on the finite element method. In Section 3, the formulas for dynamic
response sensitivity and Hessian matrix are derived by direct differ-
entiation. An algorithm to calculate dynamic response sensitivity and
Hessian matrix is formulated based on the finite element method
and the Newmark-� method. In Section 4, formulas for the dynamic
response sensitivity and Hessian matrix using the central-difference
method are presented. Finally, two numerical examples are demon-
strated with the newly developed method and the central-difference
method. Compared to the central-difference method, the numerical
examples show that the new method presented in this paper is suf-
ficiently accurate and more efficient.

2. First and second derivatives of structural stiffness, mass and
damping matrices

In order to calculate dynamic response sensitivity and Hessian
matrix, first and second derivatives of the total structural stiffness,
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mass, and damping matrices with respect to the structural design
variables have to been obtained. In this work, the first and second
derivatives of the planar frame element stiffness matrix and mass
matrix are calculated first. Then the first and second derivatives of
the planar frame element stiffness matrix and mass matrix are as-
sembled to obtain the first and second derivatives of the total stiff-
ness matrix and mass matrix of frame. The assembly process is sim-
ilar to the one in finite element method, i.e., the element stiffness
matrix and mass matrix are assembled to obtain the total structural
stiffness matrix and mass matrix. The first and second derivatives
of the structural damping matrix with respect to structural design
variables are calculated according to Rayleigh damping hypothesis.

Nodal displacement of a planar frame element is shown in Fig. 1
and nodal force in Fig. 2. Element number is denoted by e. Local and
global coordinate system are x̄0ȳ and x0y, respectively. x̄ is assumed
to be directed from node i to node j. Angle between the global co-
ordinate x and the local coordinate x̄ axes is � (clockwise). Element
length is denoted by le. Cross section of element is rectangle (or other
cross-section styles). Width be and height he of the rectangle section
shown in Fig. 3 are defined as design variables of element e.

Nodal displacement vector of element e in a local coordinate is
defined as

d̄
e = [ ūi v̄i �̄i ūj v̄j �̄j ]

T (1)

and in a global coordinate is

de = [ui vi �i uj vj �j ]
T (2)

where superscript T is vector transpose and subscript is node number
of element. Angle displacements �i = �̄i and �j = �̄j.

Nodal force vector of element e in a local coordinate is defined as

F̄
e = [ X̄i Ȳi M̄i X̄j Ȳj M̄j ]

T (3)
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Fig. 1. Beam element node displacements.
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Fig. 2. Beam element node forces.
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Fig. 3. Element design variables.

and in a global coordinate:

Fe = [Xi Yi Mi Xj Yj Mj ]
T (4)

where bending moments Mi = M̄i and Mj = M̄j.

2.1. First and second derivatives of structural total stiffness matrix

Element stiffness matrix in a local coordinate system can be ex-
pressed with element design variables (i.e., width be and height he):

K̄
e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where E and le are material elastic modulus and element length,
respectively. The coordinate transformation matrix T of element e is
defined by

Te =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos � sin � 0 0 0 0
− sin � cos � 0 0 0 0

0 0 1 0 0 0
0 0 0 cos � sin � 0
0 0 0 − sin � cos � 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

K̄
e
and Te are obtained from Eqs. (5) and (6), respectively, the stiffness

matrix of element e in a global coordinate is given by

Ke = TeT K̄
e
Te (7)

First and second derivatives of stiffness matrix of element e with
respect to the structural design variables (note: the structural design
variables consist of all the element design variables) are obtained
by differentiating Eq. (7) with respect to the design variables, i.e.,
width be and height he of each element. Obviously, if e � k, the first
and second derivatives of stiffness matrix of element e with respect
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