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An efficient algorithm is presented for the formation of null basis of triangular plane stress and plane
strain finite element models, corresponding to highly sparse flexibility matrices. This is achieved by apply-
ing a modified ant colony system (ACS). An integer linear programming formulation is also presented to
evaluate the quality of the results obtained by the proposed ant colony system algorithm. The efficiency
of the present algorithm is illustrated through some examples.
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1. Introduction

The force method of structural analysis, in which the member
forces are used as unknowns, is appealing to engineers, since the
properties of members of a structuremost often depend on themem-
ber forces rather than joint displacements.

Four different approaches are adopted for the force method
of structural analysis, which can be classified as: (1) topo-
logical force methods, (2) algebraic force methods, (3) mixed
algebraic–topological force methods, and (4) integrated force
method.

Topological methods have been developed by Henderson and
Maunder [1] andMaunder [2] for rigid-jointed skeletal structures us-
ing manual selection of cycle bases. Methods suitable for computer
programming are due to Kaveh [3,4]. Algebraic methods have been
developed by Denke [5], Robinson [6], Topçu [7], Kaneko et al. [8],
and mixed algebraic–topological methods have been used by Gilbert
and Heath [9], Coleman and Pothen [10,11]. The integrated force
method has been developed by Patnaik [12] and Patnaik et al. [13],
in which the equilibrium equations and compatibility conditions are
satisfied simultaneously in terms of the force variables.
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The force method of structural analysis requires the formation
of a maximal set of independent self-equilibrating stress systems
(SESs), known as a null basis [14,15]. The elements of this basis form
the columns of an m×�(S) matrix, B1, known as the self-stress matrix.

The main problem in the application of the force method is the
formation of a self-stress matrix corresponding to a sparse flexibility
matrix G = Bt1FmB1, where Fm contains the flexibility matrices of the
individual members of the structure in a block diagonal form.

The combinatorial methods for the forcemethod are very efficient
for skeletal structures and, in particular, for rigid-jointed frames. For
a general structure, the underlying graph or hypergraph of a SES
has not yet been properly defined, and further research is needed.
Algebraic methods, on the other hand, can be formulated in a more
general form to cover different types of structures such as skeletal
structures and finite element models (FEM). The main drawbacks of
these methods are the large storage requirements and the higher
number of operations.

Heuristic algorithms, such as ant colony algorithms, have found
many applications in optimization problems in the last decade. The
essence of these algorithms lies in the fact that their capability to
converge to a good solution does not depend on the specific search
space to which they are applied. In this paper, the ant colony system
(ACS) which is a variation of the ant colony optimization (ACO) is
applied to the formation of null bases of triangular plane stress and
plane strain finite element models corresponding to highly sparse
and banded flexibility matrices. An integer linear programming for-
mulation is presented to evaluate the quality of the results obtained
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by the proposed ACS algorithm. The efficiency of the present method
is illustrated through simple examples.

2. Formulation of the force method

Consider a structure S, which is �(S) times statically indetermi-
nate. �(S) independent unknown forces are selected as redundants.
These unknown forces can be selected from external reactions and
or internal forces of the structure. These redundants are denoted by
a vector as q = {q1,q2, . . . ,q�(S)}

t. In order to obtain a statically deter-
minate structure, known as the basic (released or primary) structure
of S, the constraints corresponding to redundants are removed. Con-
sider the joint loads vector as p = {p1,p2, . . . ,pn}t, where n is number
of entries of the applied nodal load vector and let r denote the m-
dimensional vector of generalized independent element forces. The
equilibrium conditions of the structure can then be expressed as

Ar = p (1)

where A is an n×m equilibrium matrix. The element forces can be
written as

r = B0p+ B1q (2)

where B0 and B1 are rectangular matrices each having m rows, and
n and �(S) columns, respectively. B1 is called a self-stress matrix as
well as null basis matrix. Each column of B1 is known as a null vector.

Minimizing the complementary potential energy requires that r
minimize the quadratic form, 1

2 r
tFmr subjected to the constraint of

the equilibrium conditions as in Eq. (1). Fm is a m×m block diagonal
element flexibility matrix. Using Eq. (2), it can be seen that q must
satisfy the following equation:

(Bt1FmB1)q=−Bt1FmB0p (3)

where B1tFmB1 = G is the overall flexibility matrix of the structure.
Computing the redundant forces q from Eq. (3), r can be found using
Eq. (2), i.e.

r = [B0 − B1(BT1FmB1)
−1BT1FmB0]p (4)

The structure of the matrix G is again important, and its spar-
sity, bandwidth and conditioning govern the efficiency of the force
method. For the sparsity of G one can search for a sparse B1 matrix,
which is often referred to as the sparse null basis problem.

3. Constant stress triangular element

For this element, the element forces, Fi = {F�i, F�i
, F�i}, are taken

as the natural forces acting along the side of the triangles, as shown
in Fig. 1. The corresponding displacements are denoted by �i = {��i,
��i

, ��i}.
In a global coordinate system, the nodal forces for each element

have six components and the nodal forces and element forces can
be related by projection.

The simple flexibility matrix is as

fi =
1
tA

l�ctl (5)

where l = {L�, L�, L�}, A is the area of the element, t is the thickness,

and

�ct =
1
2G

⎡
⎣

⎡
⎣ 1 cos2 � cos2 �
cos2 � 1 cos2 �
cos2 � cos2 � 1

⎤
⎦+ �

1+ �

⎡
⎣1 1 1
1 1 1
1 1 1

⎤
⎦

⎤
⎦ (6)

4. Mathematical modeling for optimization problem

Since the overall flexibility matrix of the structure G is Bt1FmB1,
for the sparsity of G one should select a null basis corresponding
to sparse B1 matrix, which is often referred to as the sparse null
basis problem. The main objective of this paper is to find sparse self-
stress matrices to simplify the solution and to ensure the formation
of well-conditioned flexibility matrices.

For a SES (null vector), no applied load is required, thus the equi-
librium conditions can be expressed as

AB1 = 0 (7)

This equation shows that the columns of the matrix A, which
is an n×m matrix with rank of n are linearly dependent. There are
m−n = t independent columns of B1 which will satisfy this equation,
thus forming a set of SESs as a basis.

A fact to emphasize is that there are many sets of SESs, which
have independent columns and satisfy the above equation. However,
the problem is to find a set corresponding to highly sparse B1 matrix.

Let us denote the columns of matrix B1 by Si as

B1 = [S1, S2, . . . , Sg , . . . , St] (8)

Suppose the first null vector S1 is found, then it can be normalized
by the following equation:

et1S1 = 1 (9)

where e1 = {1 0 . . . 0 . . . 0} is an m×1 unit vector with 1 in the first
entry position. The second column S2 can be normalized and must
be independent of S1 and these conditions are expressed as

et1S2 = 0 (10)

et2S2 = 1 (11)

where e2 = {0 1 0 . . . 0 . . . 0} is an m×1 unit vector with 1 in the
second entry position. It is obvious that the conditions analogous to
these relationships can be formed for the subsequent null vectors.

In this section, first the mathematical programming is employed
for selecting the column S2 and then extended for the formation of
the complete set of the SESs. The first null vector S1, is arbitrary. Now
we find the second null vector S2, satisfying the following equations:

AS2 = 0 (12)

et1S2 = 0 (13)

et2S2 = 1 (14)

or more concisely[
A

I2 0

]
S2 =

[
0
e2

]
(15)

where e2={01} is a 2×1 unit vector, with 1 in the gth position which
minimizes the function Z = |S2|. Here, |S2| denotes the cardinality of
S2 and it is equal to the number of non-zero entries of S2.

This can be generalized for the gth null vector Sg, after all the
previous null vectors up to g−1 have been obtained. The problem
can now be stated as follows:

Minimize the objective function of the form Z = |Sg| satisfying[
A

Ig 0

]
Sg =

[
0
eg

]
(16)

where ēg = {0 0 . . . 0 . . . 1} is a g×1 unit vector, with 1 in the gth
entry position.
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