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This paper investigates model order reduction (MOR) techniques that can be used in conjunction with

finite element schemes to generate computationally efficient solutions for multiphysics MEMS

simulation. The Lanczos and Arnoldi algorithms are implemented to extract low dimensional Krylov

subspaces from the finite element discretized system for model order reduction. A deflation procedure

is employed in both algorithms to improve the solution convergence of the implicit iterations together

with stopping criteria to automatically determine the reduced model size. Reduced order electro-

thermal–mechanical models are generated for a MEMS microgripper using the developed programs. A

Guyan-based ANSYS substructuring analysis of the same device is also performed. Results discussion on

all three techniques including preservation of full scale model properties such as dynamic behavior and

stability are presented along with comparisons of reduced and full model simulation. The developed

programs automatically generate compact structure preserving models and can be used to significantly

improve the computational efficiency without much loss in accuracy and model stability for coupled-

field MEMS simulation.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Microelectromechanical systems (MEMS) have attracted much
attention over the past decades [1,2]. Among various successful
commercial MEMS applications, actuators have become a growing
topic of interest. MEMS actuators are integrated devices that
generate motion by coupled physics field’s interactions, typically
through piezoelectric, electrostatic or electromagnetic effects.
Examples of such MEMS can be found in inkjet printer heads,
scanning probe microscopes, miniature mechanical switches and
game controllers [3–5]. Electrothermal actuators present a class of
conventional MEMS devices with great potential for science and
applications. They have been shown to exhibit high sensitivity
and are widely used in bio-sampling, optical switching and micro-
positioning applications [6–8].

Finite element analysis (FEA) has been commonly used to
simulate multiphysics effects of MEMS structures [9–11]. How-
ever, MEMS designers are continually reaching FEA limits due to
excessive demands on CPU-time and memory resources [12].
Advances in microfabrication techniques have allowed the
creation of many complex MEMS devices. The increase in design
complexity and the coupling in multiple physical domains have

posed great challenges in MEMS simulation. Computationally
demanding finite element analyses are constantly needed to
achieve accurate results for multiphysics MEMS. When transient
or dynamic MEMS behaviors are considered, the amount of
computation during finite element analysis for time-history
results is often a daunting task.

Model order reduction (MOR) techniques [12–15,22] have been
presented to generate computationally efficient solutions by replacing
a large-scale discretized model with a reduced model able to
characterize the dynamic behavior and preserve essential model
properties. An early method proposed by Guyan [15] generates a
reduced model by considering dominant degrees of freedom (DOFs)
of the original model and neglecting all others. The choice of
dominant DOFs is based on intuition and experience resulting in a
highly sensitive reduction method. Another common method is
balanced model truncation [16] which is based on the removal of
uncontrollable or unobservable eigenmodes. Various studies [17,18]
have implemented balanced truncation to create reduced models.
However, this method involves solution of the computationally
expensive Lyapunov equations [19].

Recent years has seen an increased use of Krylov subspace
reduction methods. These methods lack the computational cost of
balanced model truncation while requiring minimal user inter-
vention as opposed to Guyan [20–24]. Krylov methods construct
a reduced model based on either explicitly or implicitly
approximating the transfer function of a full scale model.
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Asymptotic waveform evaluation (AWE) is an explicit method
that has been used to create reduced models [20,21]; however,
AWE has been shown to be a numerically unstable process [22].

The Arnoldi and Lanczos algorithms [22–24] are implicit
methods that generate Krylov subspaces and reduce models by
projection onto these subspaces. Researchers [22,23] have
simulated large dynamic systems via two-sided Lanczos projec-
tion. A drawback to this method is the reduced solution describes
the response for a single node, in addition, loss of stability may
occur [22,23]. Bai and Freund [24] presented a modified version of
Lanczos where stability is guaranteed. However, this trial and
error method has been shown to affect reduced model accuracy
[24]. Arnoldi has also been the subject of a number of recent
multiphysics studies [25–29]. The authors of [25] reviewed model
reduction techniques including Arnoldi followed by presentation
of reduced order modeling of electrostatically actuated microbe-
ams and microplates. Researchers [26] presented Arnoldi reduc-
tion for two benchmark applications. The discussion was limited
to electrostatic actuation and electrothermal coupling. Rudnyi’s
group [27–29] has done a lot of work in the area of reduced order
modeling of electrothermally actuated MEMS. Arnoldi model
reduction was presented in [27] where a MEMS gas sensor was
simulated to obtain the transient temperature distribution
throughout the device due to electric resistance heating. A review
on electrothermal modeling of microsystems was provided in
[28,29] with discussions of Krylov subspace projection via the
Arnoldi and Lanczos algorithms. It was pointed out in [29] that a
major disadvantage of the Krylov-based Arnoldi and Lanczos
algorithms is the lack of a global error estimation necessitating
the manual choice of the reduced models order for solution
convergence. To the best of our knowledge, the previous MOR
studies in electrothermal MEMS have only considered electro-
thermal domain coupling.

In this study, electrothermal MEMS modeling via MOR is
extended to electrothermal–mechanical modeling. In addition, an
attempt is made to use a deflation procedure to improve the
solution convergence. The paper is organized as follows. In
Section 2 the electrothermal–mechanical governing differential
equations and finite element discretization is laid out yielding a
coupled system of ordinary differential equations (ODEs). Section
3 examines model order reduction of a system of ODEs beginning
with a description of moment matching and Krylov subspace
reduction followed by presentation of the Lanczos and Arnoldi
algorithms. Model order reduction simulation results of an
electrothermally actuated microgripper are reported throughout
Section 4 followed by a discussion of results including preserva-
tion of full scale model properties along with a comparison of
reduced and full model analysis in Section 5 and concluding
remarks are in Section 6.

2. Coupled electrothermal–mechanical formulation

Electrothermal actuators operate based on the interactions of
the electric, thermal and mechanical domains. While these
interactions occur simultaneously, minimal effect of thermal
induced deformation on the thermal domain allows for a
sequential coupling modeling approach where the temperature
solution of the electrothermal domain is distributed throughout
mechanical domain to obtain the devices deformation. When FEA
is used for solution, sequential coupling can reduce the problem
size which can be advantageous in design iterations. In electro-
thermal coupling, resistive heating or the so called Joule heating is
the dominant internal heat generation mechanism [27]. Assuming
uniform internal heat generation over a lumped resistor allows for
the decoupling of the electrical and thermal domains. Under this

assumption, the temperature distribution throughout an electro-
thermal device is governed by the following heat transfer
equation [27]:

rðkrTÞþQ ¼ rCp
@T

@t
with Q ¼

V2

R
ð1Þ

where T is the temperature, k the thermal conductivity, Q the
internal heat generation, r the density, Cp the specific heat, V the
applied voltage and R the electrical resistance.

Finite element discretization of Eq. (1) yields

C _TþKT ¼ PQ ð2Þ

where C is the heat capacitance matrix, K the conductance matrix,
and P is a vector that describes Q’s distribution throughout the
device.

The non-uniform temperature distribution obtained through
solution of Eq. (2) produces thermal stresses due to thermal
expansion. Coupling of the thermal domain with the mechanical
domain results in the following discretized structural equation
[30]:

Mu €dþCu _dþKud¼ Fth ð3Þ

where M, C and K are the mass, damping and stiffness matrices,
respectively, with the superscript u denoting the mechanical
domain, d is the nodal displacement vector, and Fth the induced
thermal loading.

Derivation of system matrices in Eqs. (2) and (3) can be made
following standard finite element discretization procedures [30].
Taking Eq. (3) as an example, the structural matrices can be
obtained based on the principle of virtual work for a volume
element V with surface area S as follows:Z

V
ðð@sÞTr €uþð@uÞT b _uþð@eÞTsÞdV ¼

Z
V
ðð@eÞTsthÞdV ð4Þ

where r, b, s and sth are the mass density, damping coefficient,
mechanical stress and thermal stress, respectively; @u and @e
represent virtual displacements and their corresponding strains.
Finite element discretization gives:

u¼Nd and e¼ Bd ð5Þ

where N is the shape function matrix and B the strain–
displacement matrix. Combination of Eqs. (4) and (5) results in

ð@dÞT ½m €dþc _dþkd� ¼ ð@dÞT f th ð6Þ

wherem¼
R

V NTrN dV , c¼
R

V NT bN dv, k¼
R

V BT EBdV and
f th ¼

R
V BT EethdV , eth and E represent the thermal strain and the

elasticity matrix, respectively. Assembling the above element
formulation will lead to its global form as shown in Eq. (3) which
along with Eq. (2) forms a coupled global system of ODEs for
modeling electrothermal MEMS devices.

3. Model order reduction

Model order reduction methods have demonstrated desirable
model size reduction [27–29]. However, to gain widespread use in
MEMS simulation, MOR implementations are needed that require
minimal user intervention while preserving original model
characteristics. Two Krylov projection-based techniques, Lanczos
and Arnoldi methods, are discussed in this section. Krylov
subspace projection methods extract low dimensional Krylov
subspaces from models described by ODEs with the desired model
reduction achieved by projection of the models onto the
subspaces while dynamic characteristics are maintained through
a property called moment matching. To illustrate the MOR
formulation procedure and moment matching we’ll take the first
order system shown in Eq. (2) as an example and rewrite it as
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