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a b s t r a c t

This paper presents a topology optimization method for the frequency response of a multiphysics system
involving fluid–structure interaction. The finite element analysis of the system is carried out based on
the us=pf formulation. The structural domain is governed by the linear equation of elasticity and
expressed in terms of the displacement, us, and the fluid domain is described by Helmholtz equation via
the primary variable of pressure, pf. The coupling conditions are the equilibrium and kinematic
compatibilities at the fluid–structure interface. The optimization procedure used in this work is based
on the bi-directional evolutionary structural optimization (BESO). Due to the binary characteristics of the
BESO method of adding/removing material, the methodology proposed here circumvents some
problems faced by the traditional density based optimization methods, especially concerning the
fluid–structure interface during the optimization process. The proposed methodology can be applied
to various engineering problems such as noise reduction in passenger compartments in automobiles and
aircraft, and vibration control of submerged structures. Several numerical examples are presented
demonstrating that the proposed BESO method can be used for the topology optimization of these kinds
of multiphysics problems effectively and efficiently for 2D and 3D cases.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades topology optimization has been used to
improve the characteristics and increase the performance of a wide
variety of systems. The basic idea is to find an optimal distribution
of material in a structural design domain, considering the objective
function and design constraints. A number of different topology
optimization approaches have been developed including the homo-
genization method [1], the solid isotropic material with penaliza-
tion (SIMP) method [2,3], the evolutionary structural optimization
(ESO) method [4,5], and the level set method [6,7].

Topology optimization has been extended to various dynamic
design problems. Among early works of topology optimization
considering dynamic response are those by Diaz and Kikuchi [8],
Ma et al. [9,10] and Xie and Steven [11,12]. Since then, many other
studies have been carried out to develop topology optimization
techniques for dynamic problems [13–22].

Although structural optimization involving dynamic response
has been investigated by many researchers, only a few have

explored the frequency response problems involving fluid–struc-
ture interaction systems, e.g. Duhring et al. [23], Akl et al. [24],
Yoon [25,26], Niu et al. [27], Zhang et al. [28,29] and Shu et al. [30].
Optimization of the frequency response of fluid–structure systems
is of great importance in many practical engineering problems
such as noise reduction in automobiles and aircraft, fatigue of
offshore structures, and performance of musical instruments.

Du and Olhoff [31,32] have considered vibrating structures in a
surrounding acoustic medium and conducted the topological design
with respect to optimum sound pressure characteristics. In these
works, the elastic structure is placed in an acoustic medium and
both structural and acoustic domains do not change their locations.
However, when coupled problems are considered and the acoustic-
structure interfaces can change their locations during the optimiza-
tion process, the classical density based topology optimization
methods become arduous [25]. In these methods, the interfaces
are not explicitly defined due to the existence of intermediate
density elements and the coupling boundary conditions cannot be
modelled straightforwardly. In order to circumvent this problem,
Yoon et al. [25] have proposed mixed finite elements, where the
structural and acoustic domains are overlapped and the acoustic
medium is approximated by equating the elastic shear modulus to
zero. More recently, Shu et al. [30] have extended the level set based
topology optimization to a class of acoustic-structural problems, in
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order to minimize the response (pressure/displacement) of the
coupled systems.

In this context, the aim of this work is to develop a topology
optimization procedure to minimize frequency responses of coupled
fluid–structure systems using the evolutionary topology optimization
methodology. An alternative approach to topology optimization of
acoustic-structural interaction systems using an extended BESO
method [33,34] for the frequency response function is presented.
Previous works on ESO/BESO methods for dynamic problems have
been mainly focused on the frequency optimization [12,35–38].

In the present work, the classical displacement–pressure ðus=pf Þ
formulation [39,40] is used for the analysis of the fluid–structure
interaction. The solid domain is governed by the elasticity equation
and the fluid domain by Helmholtz equation. The two separate fields
are fully coupled by the surface-coupling integral in each step of the
optimization process, which guarantees equilibrium conditions on
the acoustic-structural interface. The main advantage of this us=pf
formulation is the reduced number of the degree of freedom
necessary to describe the fluid domain – only one is required per
node. For the three-dimensional cases this feature leads to a
significant saving on the computational time. This formulation has
as primal variables the displacement, us, and the pressure, pf, which
are the same variables of interesting in the optimization process.
Detailed descriptions of this formulation and various other for
coupled fluid–structure systems can be found in the articles con-
tained in Sandberg and Ohayon [41].

This paper is organized as follows: Section 2 presents the govern-
ing equations and the finite element model for the acoustic-structural
coupled system. In Section 3, the topology optimization problem for
the frequency response minimization is formulated and the sensitivity
analysis is carried out. Section 4 shows the numerical results achieved
with the proposed methodology. Finally, conclusions are drawn in
Section 5.

2. Fluid–structure interaction: governing equations and finite
element model

A sketch of the coupled fluid–structure system to be optimized in
this work is shown in Fig. 1, whereΩs is the structure domain;Ωf is
the fluid domain; Γsf is the interface between the domains; ns and nf

are the boundaries unit normal vectors pointing outward from the
structural and fluid domain, respectively; n is the unit normal vector
at the interface pointing outward from the fluid domain.

2.1. Equilibrium equations

Some assumptions are made in order to model the coupled
fluid–structure system [42,43]. The structural part of the system is
considered to be homogeneous, isotropic and undertaking small
deformation. Thus, the classical linear elastodynamic equation for

a continuum medium is used:

∇ � σs�ρs
∂2us

∂t2
¼ 0 in Ωs ð1Þ

where ∇ � σs is the divergence of the Cauchy stress tensor; us is the
displacement vector field of the structure and ρs is the mass
density of the structure.

In this paper the fluid medium is considered to be inviscid,
irrotational and having only small translation, the wave equation
for the medium can be derived in terms of the sound pressure:

1
c20

∂2pf
∂t2

�∇2pf ¼ 0 in Ωf ð2Þ

where pf is the pressure scalar field and c0 is the constant speed of
sound in the fluid.

2.2. Boundary conditions

In the structural domain, the Dirichlet boundary condition is
considered:

us ¼ 0 in Γsd ð3Þ
and the Neumann boundary conditions:

σsns ¼ fs in Γsc ð4Þ

σsns ¼ pfnf in Γsf ð5Þ
Eq. (3) represents the structural displacement constraint applied

to the structure; Eq. (4) is the prescribed external load, fs, applied to
the structure; Eq. (5) indicates the action of pressure forces exerted
by the fluid on the structure and represents the equilibrium
condition at the interface between the domains.

In the fluid domain, the following Dirichlet boundary condition
is considered:

pf ¼ pf in Γfd ð6Þ
and the Neumann boundary conditions:

∇pfnf ¼ 0 in Γfr ð7Þ

∇pfnf ¼ ρf
∂2us

∂t2
ns in Γsf ð8Þ

where ρf is the mass density of the fluid medium.
Eq. (6) is the prescribed pressure applied to fluid; Eq. (7)

expresses the rigid wall boundary condition; Eq. (8) represents
the kinematic compatibility of the normal displacements at the
interface of the fluid and structural domains.

2.3. Finite element discretization

In order to obtain the finite element discretization of the
system, the weak form of the differential equilibrium equations
is derived [44–46].

In the weighted residual approximation of the structural
domain, Eq. (1) is multiplied by a set of weight functions, ws,
and integrated over the structural domain ΩsZ
Ωs

wT
s ∇ � σs�ρs

∂2us

∂t2

� �
dV ¼ 0 ð9Þ

Using Green's theorem, the weak form of the equilibrium
equation for the structural domain can be written as

Z
Ωs

wsð ÞTρs
∂2us

∂t2
dVþ

Z
Ωs

∇wsð ÞTσs dV

¼
Z
Γsf

wsð ÞTpfnf dSþ
Z
Γsc

wsð ÞT fs dS ð10Þ
Fig. 1. Coupled fluid–structure system.
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