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a b s t r a c t

This work presents a finite strain quadrilateral element with least-squares assumed in-plane shear
strains (in covariant/contravariant coordinates) and classical transverse shear assumed strains. It is an
alternative to enhanced-assumed-strain (EAS) formulation and, in contrast to this, produces an element
satisfying ab initio the Patch-test. No additional degrees-of-freedom are present, unlike EAS. Least-
squares fit allows the derivation of invariant finite strain elements which are both in-plane and out-of-
plane shear-locking free and amenable to standardization in commercial codes. With that goal, we use
automatically generated code produced by AceGen and Mathematica to obtain novel finite element
formulations. The corresponding exact linearization of the internal forces was, until recently, a
insurmountable task. We use the tangent modulus in the least-squares fit to ensure that stress modes
are obtained from a five-parameter strain fitting. This reproduces exactly the in-plane bending modes.
The discrete equations are obtained by establishing a four-field variational principle (a direct extension
of the Hu–Washizu variational principle). The main achieved goal is coarse-mesh accuracy for distorted
meshes, which is adequate for being used in crack propagation problems. In addition, as an alternative to
spherical interpolation, a consistent director normalization is performed. Metric components are fully
deduced and exact linearization of the shell element is performed. Full linear and nonlinear assessment
of the element is performed, showing similar performance to more costly approaches, often on-par with
the best available shell elements.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Finite strain plasticity and fracture simulations with finite elements
(cf. [8,10]) are peculiarly demanding with respect to numerical
efficiency, Newton iteration robustness and mesh distortion insensi-
tivity. This is relevant in the edge-based algorithms recently proposed
[12] when applied to quadrilaterals. Many of the intricate element
formulations, such as enhanced-assumed-strain, hybrid stress, discrete
Kirchhoff (DK, cf. [14]), are suitable for smooth problems where the
mesh distortion sensitivity is not a crucial factor and governing

equations do not contain discontinuities. In addition, costs associated
with convergence difficulties and static condensation (specifically
with EAS) can also be high. We take a different approach here:
starting with a mixed 4-field functional (displacement field, director
field, components of the local Cauchy–Green tensor and the corre-
sponding stress-like Lagrange multipliers), we discretize the resulting
Euler–Lagrange equations making use of suitable shape functions. A
complete testing program is then performed. The set of obstacle
problems for shells are the classical plate and shell benchmarks and
extensions to finite strains. Testing elements in finite strains is also
important since some instabilities have been found in the past (see
[22] for a report with the Morley-based shell). Element technology for
quadrilaterals is too vast to be accounted in a single article and many
elements proposed in the last three decades vary only slightly in
performance for the same number of degrees-of-freedom. Some
important works must be mentioned. A milestone in the removal of
transverse shear locking was achieved with the assumed natural
strain (ANS) technique in 1984 and 1986 [24,36]. A decade earlier,
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in-plane bending locking was solved in 1973 by the Wilson Q6
element [51], with several ulterior corrections. For undistorted
meshes, convergence rate of the results is established regardless of
the incomplete higher order terms in the polynomials (see the book
by Belytschko and co-workers [17]) and these higher order terms only
contribute to stability and coarse-mesh accuracy. Of course, mesh
distortion adversely affects the convergence rate (Lee and Bathe [31]
proved the reduction of order of convergence) and it has been a
problem with only a few published solution proposals, see also [7]. If
the element geometry is a square or a rectangle, the present approach
for in-plane bending is equivalent to the Q6 formulation. For out-of-
plane shear, we adopt a consistent version of ANS. Selective integra-
tion for transverse strains has some advantages but two nearly zero-
energy modes (often called spurious modes) appear in low-order
symmetric quadrilateral plate elements in that case – these are known
as w-hourglass and in-plane twist. We therefore describe the techni-
que in the following sections. After this, both linear (four plates and
four shells) and nonlinear tests(three geometrically nonlinear and two
finite strain plasticity) are performed with a high degree of accuracy
and mesh distortion insensitivity. Finally, conclusions are drawn in
Section 7.

2. Governing equations

2.1. Static equilibrium for an arbitrary reference configuration

Cauchy equations of equilibrium for an arbitrary reference
configuration are obtained from the corresponding spatial equili-
brium (derivations for the latter are shown in Ogden [35]). Using
standard notation (cf. [35,48]) we write the spatial equilibrium
equations as

∂σij
∂xpj

þbi ¼ 0 ð1Þ

with the Cauchy tensor components σij (i; j¼ 1;2;3). In (1) i is the
direction index and j is the facet index. The components of the body
force vector are bi. In (1), coordinates xpj are the spatial, or deformed,
coordinates of a given point (identified by p) under consideration. It is

assumed that (1) is satisfied for a time parameter tA ½0; T � with T
being the total time of observation and for a point with position
xpAΩt belonging to the deformed position domain at the time of
analysis. In tensor notation, Eq. (1) can be presented as

∇ � σT þb¼ 0 ð2Þ
with ∇¼ ∂=∂xp is the gradient operator. Making use of the deformation
gradient F and the Jacobian J ¼ det F , a direct manipulation of (1) with
the use of the second Piola–Kirchhoff stress, S ¼ JF �1σF �T leads to

∇0 � FSð ÞT þ Jb¼ 0 ð3Þ
where ∇0 is the gradient operator with respect to the material
coordinates xp, (∇0 ¼ ∂=∂xp0). A generalization results in

∇b � FbSbð ÞT þ Jbb¼ 0 ð4Þ
where

∇b ¼
∂

∂xpb
ð5Þ

Fb ¼∇b � x ð6Þ

Jb ¼ det Fb ð7Þ

Sb ¼ JbF
�1
b σF �T

b ð8Þ
Considering a time instance ta we can re-write (4) as

∇b � FabSabð ÞT þ Jabb¼ 0 ð9Þ
with Fab ¼∇b � xpa, STab ¼ Sab and taZtb.

2.2. Kinematics and stress integration for displacement-based
elements

Adopting (9) as the equilibrium equation with time parameters
ta and tb, stress integration can be used in a form that avoids the
polar decomposition or (explicit) objective rates. The resulting
derivation can be used to achieve an efficient and robust time-
integration scheme for finite plastic strains. Consider three
configurations Ωa, Ωb and Ωc (respectively at times taZtbZtc).
The relative deformation gradient between two configurations Ωa

Fig. 1. In-plane and out-of-plane bending results for one shell element. Poisson effect is obtained from the use of matrix L:
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