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a b s t r a c t

We present a new approach to compute the mass matrix of solid finite elements which allows a sig-
nificant reduction in the number of integration points. The method is based on exploiting information
regarding the mathematical form of the integrand. This enables higher degree of precision for the same
number of integration points compared to standard quadrature use. The approach is general and can be
applied to both consistent and lumped matrices of all element types. Here, we focus on the consistent
mass matrix of the widely used 10-node tetrahedral element, and demonstrate the superiority of the new
approach over conventional quadrature use. For example, we show that the new integration scheme
enables a degree of precision 4 with 1 integration point compared to 11 points with conventional
numerical integration. Also, our 4-points integration rule is practically equivalent to conventional
numerical integration with 15 points.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

FE analysis is an indispensable tool being used today in almost
every field of engineering, design, and research. The need in simu-
lating increasingly larger structures with many degrees of freedom
leads to a constant race aiming at reducing the computation time. This
is achieved by improvements in hardware capabilities, but also in
raising the code efficiency.

Any dynamic or transient simulation as well as modal-analyses of
solid continua requires the calculation of the mass matrix. Con-
ventionally, the mass matrix is computed using numeric integration
with standard quadrature [1,2]. The mass matrix computational cost is
proportional to the number of integration points. Thus, the motivation
to formulate a numerical scheme that enables the same accuracy with
a smaller number of integration points is clear. In this paper, we
propose a semi-analytical approach for calculating the mass matrix.
The method is based on the observation that the integrand of the
mass matrix is composted from two multiplicative terms. The first is a
simple polynomial expression that does not depend on the mesh, thus
can be treated analytically. The second term is a mesh-dependent
function which is handled by means of a simple polynomial approx-
imation. In other words, we use information regarding the structure of
the integrand in order to enhance the degree of precision of the
numerical integration.

Similar concepts have been considered previously, but in a differ-
ent context. For example, it has been shown that symbolic compu-
tations combined with code generation allow significant reduction of
computation time compared to traditional quadrature use (e.g. [3–6]).
Also, closed form integration has been used in order to calculate more
efficiently the stiffness matrix of specific elements, including plane
elements [7–10], 3-D bricks [8,11,12], triangles [13,14], and 3-D elastic
and electro-elastic tetrahedral elements [14–19]. Closed form for-
mulation was also used to formulate an accurate and robust 10-node
tetrahedral Cosserat-Point Element (CPE) that does not exhibit
numerical stiffness for nearly incompressible material [20]. In another
study, a systematic approximation combined with analytical integra-
tion of the weak form enabled high-accuracy closed-form expressions
for the natural frequencies of skewed parallelepipeds [21]. Hinnant
[22] proposed a technique of numerical quadrature especially suited
for quadrilateral and hexahedron p-version finite element matrices.
This technique is based on separating the integrand into two parts,
and numerically operating on each part separately.

In this paper, we propose a new integration approach specifically
designed to compute the mass matrix of solid elements. By exploiting
information regarding the mathematical structure of the integrand,
we significantly improve the degree of precision of the numerical
integration compared to standard quadrature use, for the same
number of integration points. In other words, our approach provides a
similar accuracy to standard quadrature using a smaller number of
integration points, enabling lower computation cost. Our new
approach is not limited to a specific element type, and can be applied
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to the calculation of consistent and lumped mass matrices [23]. Here,
we thoroughly examine the consistent mass matrix of the widely used
10-node tetrahedral element. Accordingly, we organize the paper as
follows: Section 2presents the general theoretical considerations. Two
new approaches are discussed, namely the Optimization-Based (OB)
and Semi-Analytical (SA) approaches. In Section 2.1, we propose a
systematic procedure to obtain the unknown coefficients of the OB
and SA approaches for the 10-node tetrahedral element. In Sections
3 and 4, we provide the necessary details and considerations in order
to implement the OB and SA approaches, respectively, with 1, 4, 5, 8,
and 10 integration points. In Section 5, we study the performance of
the OB and SA approaches and compare their accuracy with that of
conventional quadrature. Summary and main conclusions are dis-
cussed in Section 6.

2. Theoretical considerations

The consistent mass-matrix of a solid finite element is defined
as Mij ¼

R
Vρ0NiNj dV ; where ρ0 is the initial mass density, Ni are

the element shape functions, and the integration is carried out
over the initial volume of the element V [24]. By introducing the
local coordinates of the element ξ; η; ζ, the mass matrix takes the
form

Mij ¼
Z
V□

NiNj ðρ0JÞ dξ dη dζ: ð1Þ

Above, J is the Jacobian determinant of the transformation from
the global to the local coordinate system, and V□ is the integration
domain associated with the local coordinate system. The common
approach to approximate (1) is to employ a numerical integration
schemes, i.e. Mij ¼

Pnp

p ¼ 1 wpNipNjpρ0pJp. Here, the index p indi-
cates evaluation at an integration point, wp is the corresponding
weight, and np is the number of integration points. Thus, based on
this “standard” (ST) approach, Mij �MST

ij with

MST
ij ¼MST

ijp ρ0p Jp; MST
ijp ¼wpNipNjp: ð2Þ

In order to reduce the computational cost of the numerical
integration, it is of interest to use the minimum number of inte-
gration points that still provides the sufficient accuracy. We pro-
pose to reduce the number of integration points by adopting a
semi-analytical (SA) approach by rewriting (1) as follows. First, we
note that the integrand can be separated into two multiplicative
terms. The first, NiNj, is a simple polynomial expression that does
not depend on the mesh (the locations of the element nodes), thus
can be treated analytically. The second term, ρ0 J is a mesh-
dependent function of the local element coordinates. Hence, we
approximate ρ0J with

ρ0J �
Xnp
p ¼ 1

N̂pðξ;η; ζÞUðρ0JÞjðξp ;ηp ;ζpÞ ¼
Xnp

p ¼ 1

N̂p ρ0p Jp: ð3Þ

Note that the ansatz functions N̂p and corresponding sampling
points in (3) differ from the element shape functions Ni and
integration points associated with the ST approach (1). Plugging
(3) into (1) yields the SA approximation for the mass matrix Mij

�MSA
ij with

MSA
ij ¼MSA

ijpρ0p Jp; MSA
ijp ¼

Z
V□

NiNjN̂p dξ dη dζ: ð4Þ

Note the similar mathematical form of the ST and SA approx-
imations in (2)a and (4)a, which only differ in the way the coef-
ficient matrix Mijp is defined. Importantly, this matrix does not
depend on the mesh, thus can be precomputed. In addition, the
coefficients matrix Mijp has to be computed only once. In other
words, once these coefficients are set they are to be used for all

elements (of the same type). In this sense, the use of the coeffi-
cients MSA

ijp is similar to the implementation of weights wp in the
standard approach. The main difference in terms of implementa-
tion is that in the standard approach each entry of MST

ijp requires
two multiplications of the pre-stored quantities wp and Nip, e.g.
MST

123 ¼w3N13N23; on the other hand, the entries of MSA
ijp are pre-

stored as is. Consequently, the SA approach requires slightly more
memory but fewer multiplications. These differences in resources
are minor, and, practically, the two approaches require a similar
computational cost for the same number of points, np. However,
we show in the following sections that the SA approach enables
accuracy similar to that of the standard approach with sig-
nificantly smaller number of integration points.

Following the mathematical structure of (2)a and (4)a, we
propose a third approach which we term “optimization-based”
(OB) approach, where Mij �MOB

ij with

MOB
ij ¼MOB

ijpρ0p Jp: ð5Þ

The coefficient matrix MOB
ijp is pre-computed, as in the

SA approach. However, here, it is calculated by means of an opti-
mization process which aims to maximize the accuracy of MOB

ij . In-
depth discussion of this procedure is provided in Section 3.

In summary, we present in this paper two new approaches,
namely the SA and OB approaches. We develop a systematic
method to obtain the coefficient matrices, and compare the
accuracy of our new rule with that of the standard (ST) approach,
which is the prevalent method in commercial finite-element
software. Finally, we emphasize that the above considerations
are general, and not specific to a particular element type. For
specificity, we consider in what follows the well-known and
widely used ten-node tetrahedral element.

2.1. Regression procedure: ten-node tetrahedral element

The OB and SA approaches require specification of the sampling
points along with the coefficients MOB

ijp (for the OB) and the ansatz
functions N̂p (for the SA). Here, we view these as “unknowns” and
look for the most suitable ones, namely those that make the SA
and OB approximations most accurate for a prescribed number of
points. Below, we propose a systematic procedure aiming at
finding these unknowns. This procedure involves the following
steps: (i) Generation of a set of random elements, representing the
element population generated by automatic mesh generators,
which we term “learning set”. (ii) Formulation of an objective
function which reflects the average error with respect to the exact
mass matrix of each element in the learning set. (iii) Determina-
tion of the unknowns by minimization of an objective function.

For specificity, we consider below the ten-node tetrahedral
element. Standard definitions of this element are recalled in
Appendix A. In addition, without loss of generality, we consider
the case of constant initial density, ρ0 ¼ 1.

2.1.1. Generating the learning set
The learning set includes random elements which are gener-

ated as follows. We begin with the parent element, shown in Fig. 1.
The nodes of the next element are randomly relocated by changing
each degree of freedom by a random number uniformly dis-
tributed between ½�δ; δ�. The value of δ is linearly increased from
zero for the first element to δmax for the last element. Without loss
of generality, the locations of nodes 1 and 5 are kept unchanged.
This procedure repeats until the entire set is generated. In order to
avoid unphysical elements we choose δmax ¼ 0:12, and exclude
from the learning set elements having a negative metric, Jo0.
Examples of such randomly generated elements are shown in
Fig. 1b–d, and a flow chart summarizing the above procedure is
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