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a b s t r a c t

In this paper, we propose a stabilized augmented Lagrange multiplier method for the finite element
solution of small deformation elastic contact problems. We limit ourselves to friction-free contact with a
rigid obstacle, but the formulation is readily extendable to more complex situations.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper is motivated by the recent work by Chouly and Hild
[9] on Nitsche's method for contact problems. In their work, the
contact conditions were incorporated into the bilinear form to
transform the variational inequality describing the contact pro-
blem to a nonlinear variational equality. We here point out that
the same can be done for a more standard stabilized Lagrange
multiplier method if we augment the Lagrangian using the
standard approach of, e.g., Alart and Curnier [1]. Using a multi-
plier method has an advantage compared to the Nitsche method
in that there is an increased freedom in choosing the multiplier
space. For example, using a continuous multiplier with nodes
coinciding with the displacement nodes on the surface we can
use nodal quadrature schemes to emulate point Lagrange mul-
tipliers (at least for low order elements). For such schemes,
contact will be checked at the nodes as is usually done in engi-
neering practice. This is not possible following the Nitsche
approach.

A basic issue when using Lagrange multipliers to enforce con-
tact is the number of degrees of freedom in the discrete Lagrange
multiplier space. If too many constraints are used, the discrete
system might be singular, and if there are too few constraints,
there might be unphysical violation of the non-penetration con-
dition. There are, basically, two different possibilities to obtain a
stable discretization. The first approach is to choose discrete

spaces that fulfill the inf–sup condition which guarantees stability
(cf. [7]). A well-known example of such a scheme is the mortar
method introduced by Bernardi et al. [5], and applied to contact
problems by Ben Belgacem et al. [4]. The other option is to change
the bilinear form in such a way that stability is ensured, as pio-
neered by Barbosa and Hughes [2,3] and this is the approach taken
in this paper. We consider an augmented version of the stabilized
Lagrange multiplier method introduced by Hansbo et al. [11] and
adapted to contact by Heintz and Hansbo [12]. Unlike the method
in [11,12], which was based on a global polynomial approximation
of the multiplier, the method herein is suitable for locally defined
multipliers.

The rest of the paper is organized as follows. First, we describe
the proposed method. Secondly, we make some comments on the
stability and convergence properties of the discretization. Finally,
we present some numerical results and conclusions.

2. Problem formulation

We consider an elastic body covering the domainΩ in Rd, d¼2,
3, with boundary Γ ¼ΓD [ ΓN [ ΓC and outward pointing normal
n. We consider the case where the domains are subjected to
proper Dirichlet (on ΓD) and traction (on ΓN) boundary conditions
and are coming into frictionless contact along ΓC, and are sub-
jected to volume forces f AðL2ðΩÞÞd. The unilateral contact pro-
blem in linear elasticity consists in finding the displacement field u
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satisfying the equations and conditions

�∇ � σ ¼ f in Ω;

σ ¼ 2μεðuÞþλ∇ � uI in Ω;

u¼ 0 on ΓD;

σ � n¼ 0 on ΓN;

unr0; σnðuÞr0; un σnðuÞ ¼ 0 on ΓC;

9>>>>>>=
>>>>>>;

ð1Þ

with σnðuÞ≔n � σðuÞ � n, un≔u � n, and with εðuÞ the strain tensor
with components

εðuÞ ¼ 1
2 ∇ � uþ ∇ � uð ÞT
� �

;

where ðw � vÞij ¼wivj, with μ¼ E
2ð1þνÞ and λ¼ νE

ð1þνÞð1�2νÞ, where E
is the modulus of elasticity, ν is Poisson's ratio, and with I the
identity tensor. We shall assume that μ and λ are constant in the
domain.

2.1. An augmented Lagrangian method

One interesting way of deriving an augmented Lagrangian
method is to replace σnðuÞ by a Lagrange multiplier p (the contact
pressure) so that the final line in (1) is written

unr0; pr0; unp¼ 0; ð2Þ

(the Kuhn–Tucker conditions) and, using the notation,

½a�þ≔
a if a40;
0 if ar0;

(
ð3Þ

replace conditions (2) by the equivalent statement

p¼ �1
γ
½un�γp�þ ð4Þ

with γ a positive number, cf. Chouly and Hild [9, Proposition 2.1].
Defining function spaces

V ¼ fvA ðH1Þd : v¼ 0 on ΓDg; Q ¼ L2ðΓCÞ; ð5Þ

and seeking ðu; pÞAV � Q we have by Green's theorem, with

aðu; vÞ≔
Z
Ω
σðuÞ : εðvÞ dΩ; LðvÞ≔

Z
Ω
f � v dΩ;

that

aðu; vÞ�
Z
ΓC
p vn ds¼ LðvÞ

where vAV and vn≔v � n. Following [9] we write vn ¼ vnþγq�γq
for an arbitrary function qAQ , so that we may write

aðu; vÞ�
Z
ΓC
p ðvn�γqÞ ds�

Z
ΓC
γp q ds¼ LðvÞ:

Replacing the p in the first integral by the expression in (4) we

finally obtain the problem of finding ðu;pÞAV � Q such that

aðu; vÞþ
Z
ΓC

1
γ
½un�γp�þ ðvn�γqÞ ds�

Z
ΓC
γp q ds¼ LðvÞ 8ðv; qÞAV

� Q :

ð6Þ
This problem is related to seeking stationary points to the

functional

Πðu; pÞ≔aðu;uÞ�LðuÞþ
Z
ΓC

1
2γ

un�γp
� �2

þ ds�
Z
ΓC

γ
2
p2 ds; ð7Þ

which is the well known nonlinear variational equality version of
the augmented Lagrangian method, see, e.g., Alart and Curnier [1].
While replacing the standard variational inequality formulation
(cf., e.g., [4,13]) by a nonlinear variational equality is not strictly
necessary in an augmented method, cf. Chen [8], the nonlinear
equality approach is well suited for applying Newton methods,
and allows for avoiding the activation/deactivation of multipliers
as the contact zone changes during nonlinear iterations. In a
standard variational inequality setting, an active set of multipliers
is typically used, which favours iterative algorithms able to
accomodate active sets, cf. [6].

The formulation (7) constitutes the starting point for our finite
element approximation. A remarkable fact is that by replacing p by
σnðuÞ in (7) we formally obtain the Nitsche method of [9] which
can be interpreted as a stabilized multiplier method in the linear case
[15]. The augmented Lagrange multiplier method is, however, not
a stabilized method and is subject to the standard problems of
matching spaces for stability of the discrete problem, cf. [7].

3. Finite element methods

Assume that we are given a triangulation T h of the domain Ω.
We denote by h the meshsize of T h. We introduce the finite ele-
ment space

V
!h

¼ fv : vA H1ðΩiÞ
h id

; vj K A ½P1ðKÞ�d; 8KAT h; v¼ 0 on ΓDg;

where P1ðKÞ denotes the space of affine polynomials on K. On ΓC

we introduce a family of spaces Qh of discrete multipliers. As a
particular case, we will consider the spaces Qh

i , i¼0 or i¼1, of
piecewise constants or linears defined as follows: the interface ΓC

is decomposed as the union of the faces of the triangulation T h on
ΓC which gives a set of faces F h

C consisting of the faces of simplices
in T h.

Our particular choices of multiplier space are

Qh
0 ¼ fqAQ : qj K AP0ðKÞ; 8KAF h

Cg; ð8Þ
and

Qh
1 ¼ fqAC0ðΓCÞ : qj K AP1ðKÞ; 8KAF h

Cg; ð9Þ
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Fig. 1. Displacements using the unstabilized scheme.
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