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a b s t r a c t

The Koiter–Newton approach is a novel reduced order modeling technique for buckling analysis of
geometrically nonlinear structures. The load carrying capability of the structure is achieved by tracing
the entire equilibrium path in a stepwise manner. At each step a reduced order model generated from
Koiter's asymptotic expansion provides a nonlinear prediction for the full model, corrected by a few
Newton steps. The construction of the reduced order model requires derivatives of the strain energy with
respect to the degrees of freedom up to the fourth order, which is two orders more than traditionally
needed for a Newton based nonlinear finite element technique. In this paper we adopt the co-rotational
formulation to facilitate these complex differentiations. We extend existing co-rotational beam and shell
element formulations to make them applicable for the high order derivatives of the strain energy. The
geometrical nonlinearities are taken into account using derivatives of the local co-rotational frame with
respect to global degrees of freedom. This is done outside the standard element routines and is thus
independent of the element type. We utilize three configurations and the nonlinear rotation matrix to
describe finite rotations of the shell accurately, and profit from the automatic differentiation technique to
optimize the programming of high order derivatives. The performance of the proposed approach using
the co-rotational formulation is demonstrated using benchmark examples of isotropic and laminated
composite structures.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of geometrically nonlinear responses of structures
is important for determining their load carrying capability, espe-
cially in the case of buckling where a limit point or a bifurcation
point exists [1–8]. Utilizing the expanding computational power of
modern computers nonlinear finite element analysis (FEA) has
become the standard technique used to obtain the nonlinear
response of complex structures, however, the repeated analyses
that are needed for FEA in the design loop are still computationally
demanding. Thus, reduced order techniques that can be used to
reduce a problem's size significantly are attractive.

Koiter reduction methods [9–17] use the Koiter's famous per-
turbation technique [18] to reduce the number of degrees of
freedom in the finite element model. The main advantage of Koi-
ter's theory [2,18–20] is the capability to predict quickly but

accurate enough the propensity of a structure to buckle and to
provide the structure's initial postbuckling behavior. In Koiter's
perturbation technique, his asymptotic expansion is used only
once at the bifurcation point to construct the reduced order model
(ROM) which can present the initial postbuckling path of the
structure. Hence, the traditional Koiter reduction method is valid
asymptotically in the neighborhood of the bifurcation point. The
majority of research done in this field applies an expansion of the
displacement field up to the second order which is usually accu-
rate enough to capture the initial postbuckling response of struc-
tures [16,21–24]. Damil and Potier-Ferry [25] have adopted higher
order terms to increase the range of validity of the perturbation
expansion further. Increasing the number of higher order terms in
the displacement provides a wider range of validity. Yet, the
reduced order model obtained from a single perturbation expan-
sion still has a limited range of validity that cannot be determined
a priori. In addition, the prebuckling state is assumed to be linear
in most of Koiter reduction methods used in [10,15,16,24,26,27],
since these methods are based on an alternative procedure pro-
posed in Budiansky and Hutchinson [28], in which the assumption
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is made that the prebuckling is linear. In reality, this linear
assumption for the prebuckling state will often overestimate the
buckling load of an important class of engineering problems for
which the prebuckling is obviously nonlinear. Cohen [26] and Fitch
[27], and later Arbocz and Hol [29,30] have derived the mod-
ifications necessary to make Budiansky and Hutchinson's work
[28] include prebuckling nonlinearity. Recently, Rahman [13,14,17]
and Zagari [11,12] have made use of Arbocz and Hol's [29,30]
derivations within a finite element context to consider the non-
linearity of the prebuckling of a structure.

Apart from Koiter reduction methods which are mainly used in
the static buckling analysis of structures, the idea of reduced order
models has been studied intensively in the past across various
disciplines following different approaches. In particular, projection
methods based on Krylov subspace algorithms have a tradition
due to the numerically efficient and relatively stable generation of
orthogonal projection bases [31–33] often with application in
structural vibration [20,34,35] and dynamics [16,36–38]. Other
disciplines where reduced order models may significantly alleviate

the numerical effort spent in repeated solution steps are fluid
mechanics [39–42], aeroelasticity [43,44] or optimization [45,46]
to mention a few. An exhaustive overview about reduced order
modeling techniques and strategies, about fields of application and
the analysis of convergence behavior and error-control is provided
e.g. in Chinesta et al. [47] or Quaterioni and Rozza [48].

The aforementioned Koiter reduction methods adopt the
solution of the reduced order model as a predictor without using
any correction step based on the full model [40,41,49–52]. Another
family of model reduction techniques combines the prediction
stage together with a correction phase [53–55]. These predictor-
corrector methods [56–58] are commonly used to trace the non-
linear equilibrium path of structures. Recently, a novel approach,
the Koiter–Newton method, has been proposed for the numerical
solution of a class of elastic nonlinear structural analysis problems
[59–61]. The range of validity of this approach is not limited to the
small range near the bifurcation point, since Koiter's asymptotic
expansion is applied from the beginning of the equilibrium path
rather than only at the bifurcation point. In a series of expansion

Nomenclature

List of symbols

N number of degrees of freedom in the full finite
element model

1þm number of degrees of freedom in the reduced
order model

m number of closely spaced buckling modes
fext , f int , fr external load, internal load and residual force
q, q0 displacements in current and nominal configurations
u relative displacement from nominal configuration to

current configuration
λ, λ0 load parameters at current and nominal

configurations
Δλ increment of load parameter from nominal to current

configurations
L, Q, C linear, quadratic and cubic forms in expansion of

equilibrium equations
L, Q, C 2D, 3D and 4D tensors of L, Q, C
F, ϕ, fα load matrix, load amplitude and sub-loads
ξ, uα , uαβ , uαβγ generalized displacement and first to third

order displacement fields
L, Q, C linear, quadratic and cubic forms in reduced

order model
L, Q, C 2D, 3D and 4D tensors of L, Q, C
Kt tangent stiffness matrix
Eα α-th unit vector
Lα , Q αβ , Cαβγδ column vectors of tensors L, Q, components of

tensor C
q;λ linear displacement of the structure under the exter-

nal load fext

Symbols used in co-rotational beam element

a, b node number
(x,y) global coordinate system
ðe0x ; e0yÞ co-rotational frame in reference configuration
ðex; eyÞ co-rotational frame in nominal configurations
q, bq global and local degrees of freedom
ua; va;θa;ub; vb;θb components in global degrees of freedom qbub;
bθa;
bθb components in local degrees of freedom bq

l, ln initial and current length of beam

θ angle between nominal configuration and x-axis
θ0 angle between reference configuration and x-axis
Δθ angle between reference and nominal configurations
ra, rb position vectors of nodes a and b in reference

configuration
da, db position vectors of nodes a and b in nominal

configuration
κ, A, U curvature, area of cross section and strain energy
f, bf , KL global and local internal loads, linear stiffness
x0a; y0a
� �

, x0b; y0b
� �

coordinates of nodes a and b in initial
configuration

Symbols used in co-rotational shell element

a, a¼ 1;2;3;4 node number
Tg global coordinate system
X;Y;Z axes in Tg

T0, T co-rotational frames in reference and nominal
configurations

d0
1;d

0
2;d

0
3 axes in T0

d1;d2;d3 axes in T

F, R, U deformation gradient, rotation matrix, tension matrix
q displacement from reference to current configurations
qn relative displacement from reference to nominal

configurations
u relative displacement from nominal to current

configurations
ta translation part of each node in q
θa, θ

n
a , ϑa rotation parts of each node in q, qn and u

~θ
n

a ,
~ϑa anti-symmetric matrices formed by three components

in θn
a and ϑabq local degrees of freedombta, bθa translation and rotation parts of each node in bq

~bθ a anti-symmetric matrix formed by three components
in bθa

r0a position vector of each node in reference
configuration

I 3�3 identity matrix
Ra rotation matrix of each nodebRa local rotation matrix of each nodebε, C local strain and material matrix
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