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a b s t r a c t

In this paper, numerical modelling of isothermal solutal melting and solidification in binary systems is
done using a new meshfree interface-finite element method (MI-FEM) where the implicitly represented
liquid–solid interface is allowed to arbitrarily intersect the finite elements. A meshfree radial basis
functions (RBFs) method is used for solving a distance-regularized level set (DRLS) equation such that re-
initialization is completely eliminated and fast marching algorithms for interfacial velocity extension are
not necessary resulting in a more efficient solution with excellent volume conservation. In the proposed
method, intersection points between the mesh and the zero level set are used as meshfree nodes such
that at the interface-embedded elements interpolants are constructed using meshfree RBFs ensuring
both the partition of unity and Kronecker-delta properties are satisfied allowing for precise and easy
imposition of Dirichlet boundary conditions (DBCs) on each side of the interface. A coupling of the MI-
FEM with a new meshfree automata (MA) method is used to efficiently predict the microstructural
evolution during solidification. Benchmark problems with strong discontinuities were solved where very
good accuracy was obtained. The solute conservation and interfacial equilibrium equations describing
solutal phase transformation in binary systems were solved using the newly developed method.
Mathematical formulation and implementation followed by numerical results and analysis will be
presented and discussed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Solutal melting and solidification

Solutal phase transformation is an isothermal diffusion-controlled
process such that under certain process parameters melting of the solid
or, conversely, solidification of the liquid will occur. Maintaining equili-
brium at the liquid–solid interface governs the direction and rate of its
evolution. Proper understanding of the interfacial kinetics is essential
since it occurs in a number of relevant industrial processes such as
powder metallurgy which is an important technique for surface
refurbishment and fabrication of complex components. Careful selec-
tion of bonding parameters is essential in order to avoid inferior
mechanical and thermal properties of the finished product. Incomplete
melting in wide-gap brazing results in porous joints with inferior
mechanical properties [1]. Incomplete melting of additive powder
particles during transient liquid phase bonding of single crystals results
in stray grain formation which introduces grain boundaries into the
single crystal along with their inherent weaknesses making the
material more susceptible to grain boundary corrosion and sliding
[2–5]. Careful selection of process parameters such as temperature,
time and solute concentration is very important in optimizing the

process and the final microstructure of the product. Therefore, it is not
surprising that numerical modelling of the effect of process parameters
on the interfacial kinetics during phase transformation is very essential.

Numerical modelling of phase transformation of metals and
alloys remains one of the most challenging problems in materials
science. This is due to the requirement of simultaneously solving a
highly non-linear and coupled free boundary problem in addition
to predicting the future location of the liquid–solid interface which
is itself an unknown. The complex topological evolution of the
interface and handling of interfacial dynamics such as merging
and splitting makes numerical analysis quite challenging.

In numerical modelling of solidification and phase transformation,
the interface separating two distinct phases can be assumed either
diffuse (with a finite thickness) or a sharp interface (infinitesimally
thin). The diffuse interface assumption is taken in phase field (PF)
methods often attributed to Cahn and Hilliard [6,7]and Allen and
Cahn [8]. In such methods, a phase parameter is introduced which is
1 in phase A and 0 in phase B while it varies sharply but smoothly
across an interfacial region with a finite thickness. The PF method has
gained considerable popularity in materials science and modelling of
phase transformation due to its ability to directly incorporate the
thermodynamics of phase transition into the formulation. It also
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eliminates the need to assign boundary conditions directly at the
interface. Additionally, computation of interface normals and curva-
ture is also avoided.

Traditional finite element modelling of phase transformation
based on the sharp-interface assumption involves interface tracking
techniques [9–16] where the interfaces are explicitly tracked by
imposing marker points directly at the interface while an adaptive
meshing technique is used such that the mesh is continuously
updated to conform to the evolving liquid and solid topology.
The main advantage of this Lagrangian approach is that imposing
the Dirichlet boundary conditions (DBC) at the interface, as is often
typical in sharp-interface solidification and melting numerical mod-
els, is easy since there will always be interfacial nodes that directly
represent the interface. However, the main challenge with this
approach is that the interfaces are represented explicitly requiring
the continuous update and re-generation of the mesh which becomes
very time consuming especially in 3D analysis. Explicit handling of
interfacial dynamics such as merging or splitting becomes a signifi-
cant challenge where interfacial nodes must be added or deleted as
required to ensure an accurate solution.

Rather than explicitly tracking the sharp-interface, it can be
captured using a fixed mesh while allowing it to evolve indepen-
dently of the underlying mesh. Methods based on this Eulerian
approach is the volume-of-fluid method developed by Hirt and
Nichols [17] which is very popular in modelling computational
fluid dynamics problems such as multi-phase flows. In the VOF
method, a step function, f, is used to define the interface such that
it is 0 in one phase and 1 in the other while the sharp-interface lies
somewhere at 0o f o1. Advantages of the VOF method include
easy handling of interfacial dynamics and their excellent volume
and mass conservation properties [18]. However, an extra step is
often required to reconstruct the interface from the VOF solution
using popular methods such as the piecewise linear interface
calculation (PLIC) [19]. The overall accuracy of the method
depends largely on the performance of its interface reconstruction
schemes.

Another approach is to implicitly define the interface by a
higher dimension, smooth, and continuous function, Φ, such as a
signed distance function (SDF), where the interface is the zero
level set of that function. The SDF is then evolved by solving a
Hamilton–Jacobi level set equation [20]:
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where Φ is the level set function (LSF) value, V
!

is the convective
velocity in the domain, and Vextn is the normal velocity of the interface
extended sufficiently around the interfacial area. This approach has a
number of very attractive features such as easy calculation of the
local normal vector to the interface, curvature, and easy handling of
interface dynamics such as splitting and merging.

It is important to note that since the interfacial evolution is now
independent of the underlying mesh, a finite element formulation
used to calculate the field variables must account for the inter-
element discontinuities where the interface may arbitrarily inter-
sect the elements. An additional complication due to the implicit
representation of discontinuities is that there are no nodes that
immediately lie on the interface. As a result, it is not straightforward
to impose the essential boundary conditions governing interfacial
equilibrium as in the conventional finite element method (FEM).

The relatively recent generalized/extended finite element
methods (GFEM/XFEM) based on the Partition of Unity method
(PUM) developed by Melenk and Babuska [21] are excellent
techniques for handling both weak and strong discontinuities that
may arbitrarily intersect the finite elements. The (GFEM/XFEM) are
practically identical methods [22] where the GFEM was adopted
by the Texas school [21,23,24] and the XFEM was adopted by the

Northwestern school [22,25,26]. In the GFEM/XFEM, discontinu-
ities are allowed to intersect the element eliminating the require-
ment of aligning the edges of elements with the discontinuity as is
typically done in conventional FEMs. A hybrid finite element-
meshless approach is used where the conventional FEM is used for
elements away from the discontinuity while local enrichment at
nodes of elements intersected by the interface is done within the
framework of the PUM [21] such that a field variable can be
approximated by

UðxÞ ¼ ∑
nstd

i ¼ 1
NiðxÞUiþ ∑

nenr

j ¼ 1
ψ jðxÞaj ð2Þ

where NiðxÞ in Eq. (2) are the standard finite element shape functions
for node i, Ui are the nodal degrees of freedom, ψ jðxÞ are the
enrichment functions and aj are the nodal enrichment degrees of
freedom. nstd and nenr are the number of nodal standard degrees of
freedom and nodal enriched degrees of freedom, respectively.The
GFEM/XFEM is tremendously successful especially in the area of solid
mechanics and modelling of crack propagation and fracture where it
entertains a high degree of maturity. This is mainly due to the
flexibility of the PUM for inclusion of pre-determined analytical
solutions as enrichment functions which significantly facilitates hand-
ling of singularities that arise at crack tips during crack propagation
analysis. Adding the well-known asymptotic singular near-tip solu-
tions near crack fronts and dislocation cores as enrichments can
significantly reduce the h-refinement required to handle such features.

The GFEM/XFEM generally involves the use of some type of
enrichment functions such as Heaviside or ridge functions where
the added enrichment functions correspond to added degrees of
freedoms at the nodes of the original element as shown in Fig. 1.
Two complications become immediately apparent. The first is that
for certain types of enrichment functions, such as ridge functions,
the enrichment effect may not vanish for elements adjacent to
the intersected element [22]. This means that shape functions at
the adjacent elements will no longer satisfy the partition of unity
property since only some of the nodes of the element are enriched
while others are not. Such elements are termed “blending”
elements which have been shown to slow convergence if left
untreated [27,28]. Specialized methods are often needed to avoid
the parasitic behaviour associated with blending elements and a
lot of research has been done to overcome problems associated
with them [22]. The second apparent problem is that there are no
degrees of freedoms that are directly associated with the interface.

Fig. 1. Nodal enrichment in the XFEM/GFEM.
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