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In topology optimization of a continuum under multiple loading cases (MLC), if the magnitudes of loads
are different obviously, it is hard to obtain a clear component to support the weaker loads. Such MLC are
called ill-loading cases (ILC). A new method is presented to solve the layout optimization of a continuum
with bi-modulus material under multiple loading conditions (MLC) by using a Q-norm weighting
objective which is formed with the Q-norm of weighted structural compliances of MLC. The effects both
of the value of Q and bi-modulus behavior of material on the final material distribution are studied. Both
of validity and efficiency of the present algorithm are discussed numerically. Results show that the
optimal bi-modulus material distribution of a structure under serious ILC can be found if using a small
positive value of Q within interval of [0.1, 0.2] and the computational efficiency is very close to that of
traditional isotropic material layout optimization.

Q-norm weighting scheme
Ill-loading cases

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Layout/topology optimization is a powerful tool for the con-
ceptual design of a structure/composite material. In topology
optimization the layout of material in structure can change, which
is the essential difference from the traditional detailed design
approaches, e.g., size/shape optimization. However, the computa-
tional cost of topology optimization is usually very heavy as
comparing with size/shape optimization. Therefore, the popularity
of the method in practical design [1] owe to two aspects, i.e., the
development of computer technology and related computational
methods. The most successful solution methods are as homoge-
nization design based method (HDM) by Bendsge and Kikuchi [2],
solid isotropic material with penalization method (SIMP) by
Rozvany et al. [3], evolutionary structural optimization method
(ESO) by Xie and Steven [4] and level set method (LST) by Wang
et al. [5].

In practical engineering, such materials as concrete, cast iron,
plastic and rubber, are used popularly. Mechanical experiments
show that the tensile and compressive moduli of the materials are
different under linear elastic deformation along the same direc-
tion. In general, the materials are called bi-modulus materials. The
mechanical property of a bi-modulus material is stress dependent
which results in many times of structural reanalysis for obtaining
the accurate deformation of a structure with such material [6]. To
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avoid the behavior of stress-dependent of a bi-modulus material,
approximation schemes are presented [7-10]. In such approxima-
tion, the original piecewise linear constitutive curve is approxi-
mated with a continuous differentiable curve. On the other hand,
material replacement methods are also suggested [11-16] in
layout optimization of a continuum as the different behavior in
tension and compression exists.

In practical engineering, a structure is generally subjected to
multiple loading cases (MLC) [17-22]. In the work by Sui et al. [19],
they presented a multiple-level weighting scheme to deal with the
topology optimization under ill-loading cases. In their work, the
loading cases were divided into two groups according to the
magnitudes of the loads. Topology optimization of structure under
the higher loads was firstly carried out. And the second level of
topology optimization of structure under lower loads was imple-
mented on the results of previous level of topology optimization.
In 2006, they [20] proposed a new method to select the weight
functions of loads by considering strain energy constraints in
optimization.

The approach to deal with ILC design is still complicated. Besides,
the stiffness design of a continuum under MLC discussed in above
works does not consider material nonlinear, e.g., bi-modulus material
in structure. That is the motivation of our present work. Simulta-
neously, in the present work, the power exponent weighting scheme
of objective functioin is adopted. The value of the power exponent is
in the interval of (0, 1) to deal with ill-loading cases. Further, the
effects of both the value of the power exponent and bi-modulus
behavior of material on the optimal topologies are to be discussed
numerically.
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2. Methodology

Essentially, finite element method (FEM) is adopted to give
structural deformation analysis is this work. Material replacement
method [16] is adopted to solve bi-modulus stiffness design. And
Q-norm weighting scheme is presented to solve topology optimi-
zation of a continuum under MLC.

2.1. Formulation of weighted optimal stiffness design
In the present work, only linear elastic structure is considered.

The optimal stiffness design of a structure with bi-modulus
material under weighted MLC is defined as
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where p,, is the relative density of the m-th element in design
domain, i.e., . ¢, denotes the weighted structural compliance
under Ni¢ types of loading conditions. w; is the linear weighting
coefficient. Q e (0, co) is power exponent for weighting scheme
which is different from that given by Luo et al. [21]. In their work,
Q=2 was used and common MLC problem was considered. ¢; is
the modified structural compliance under the i-th loading condi-
tion. K; is the global stiffness matrix of structure under the i-th
loading condition, U; and P; are the global nodal displacement
vector and nodal force vector, respectively. P, is set to be 0.001 in
this work to avoid singularity of the global stiffness matrix of
structure with fixed mesh scheme.

In optimization, the relative densities of elements in design
domain are design variables. In order to use mathematical pro-
gramming approach to solve the optimization, the binary design
(0/1) problem is relaxed to be a continuous design variable
problem, i.e., pi; € [Pmin, 1.0]. To reduce the amount of the mid-
density elements, the stiffness matrix of porous material with the
relative density of p,, is given according to the power-law rule
[23], i.e,

Dm,p = /)?n . Dm,O 2)

where D, is the stiffness matrix of the m-the element without pores.
2.2. Material replacement scheme

Fig. 1 gives the elastic constitutive curve of a bi-modulus material.
The elasticity of a bi-modulus material is stress-dependent. Take
Er=tana and Ec=tanf} as the tensile modulus and compressive
modulus of bi-modulus material, respectively. And define the ratio
between Er and Ec using

Rrce =Er/Ec 3

Fig. 2 shows that the bi-modulus material shows isotropic under pure
tension (Fig. 2a) or under pure compression (Fig. 2b). Only when
under complex stress state (Fig. 2c), the elasticity of bi-modulus
material shows orthotropic and the principal directions of material is
in accordance with the principal directions of stress tensor. For a
complicated deformation of a structure with bi-modulus material,
generally, it has components or areas under complex stress states.
So, traditionally, many times of structural reanalysis is required for
obtaining the enough accurate results of a structure with bi-modulus
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Fig. 1. Stress(s)-strain(e) curve of a bi-modulus material (a # p).

material [6,7]. In reanalysis, the elastic matrix and the principal
directions of material varies alternatively.

Using traditional method to solve topology optimization of a
continuum with bi-modulus material, there exist at least two levels
of iterations, i.e., the inner iteration for finding out the accurate
deformation of structure and outer iteration for updating the design
variables. It is known, in the first several iterations for optimization,
the results are not optimal. So, our suggestion is to divide the inner
iteration and merge them into the outer iteration. In other words,
there is only one time of structural analysis for each update of
design variables. Simultaneously, the local stiffness should be
adjusted with respect to the local stress state in the previous step.

However, the elasticity shows orthotropic with unset material
principal directions if the bi-modulus material is under complex
stress states. Theoretically, the number of orthotropic materials
predefined in simulation should be equal to that of finite elements
in structure. It is incredible for a complicated structure with great
quantity of elements. Therefore, the feasible way to overcome this
difficulty is to define several stress-independent materials to
replace the original bi-modulus material. Further, the easiest way
is to use two isotropic materials to replace the original material.
From above, Er and E¢ can be selected as the moduli of the two
isotropic materials. Clearly, the difference between the mechanical
behaviors of structure with original material and with new isotropic
materials is mainly caused by the material replacement happening
in the elements which are under complicated stress states.

2.3. Modification factor of local stiffness

In simulation, the original bi-modulus material is replaced with
isotropic materials in structure. To obtain the same loading-deformation
relations of structure, the local stiffness must be the same for the
structure either with original bi-modulus material or with the new
replacement material (isotropic material). Under the same complex
stress state, the (original) element with bi-modulus material shows
different deformation from that (the new replaced element) with
isotropic material. And their strain energy must be different, too. This
conclusion is obtained based on the same amount of material in both
elements. Fortunately, the amount of material in optimization is
changeable. The local stiffness (e.g., strain energy) can be forced to be
identical for two elements by modifying the amount of material in
element. Therefore, the modification of local stiffness is, actually, a
further update of material amount in element. The modification factor
of the local stiffness can be calculated by the following equation:

fn= max[10~°, (SEDE* / max(10~*°, SED)| 4)

where the total SED of the m-th element is
SED;;, = TSED,;; +CSED,;, 5)
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