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a b s t r a c t

Multi-scale finite element (FE) modeling and analysis of engineering structures have become very
necessary in order to provide both global and local structural information for a comprehensive
assessment of structural safety. The multi-scale FE modeling needs FE coupling methods to combine
mixed-dimensional finite elements, such as beam-to-shell and plate-to-solid, in a single structural
model. This paper presents a new mixed-dimensional FE coupling method that can achieve both
displacement compatibility and stress equilibrium at the interface between the different element types.
The principle of virtual work is first used to derive both linear force and displacement constraint
equations for the interface. A numerical method compatible with commercial FE codes is developed to
figure out the linear constraint equations which satisfy both displacement compatibility and stress
equilibrium conditions at the interface. The proposed coupling method is then extended to nonlinear
mixed-dimensional FE coupling problems. Finally, the proposed coupling method is applied to a number
of test cases including linear beam-to-plate, beam-to-shell and beam-to-solid interface problems, a
linear frame structure, and a beam-to-shell buckling problem. The obtained results are also compared
with those from the existing methods. It reveals that the proposed coupling method can handle both
linear and nonlinear mixed-dimensional FE coupling problems more accurately than the existing
methods and that it can be applied to a structure satisfactorily for multi-scale simulation.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Finite element (FE) modeling and analysis of an engineering
structure nowadays are a common practice to understand struc-
tural behavior and assess structural safety. The FE modeling using
small-scale elements can usually improve the accuracy of numer-
ical simulation of a structure but it can also lead to a huge
computation cost or a difficulty to run. The FE modeling using
relatively large-scale elements may capture global structural
behavior but it may not be able to detect local structural feature.
The multi-scale FE simulation can provide a better solution in this
aspect [1–4]. By taking a frame structure shown in Fig. 1 as an
example, the local joints are simulated with shell elements of
small scale while the other components in the frame are simulated
with beam elements of large scale. Such a multi-scale simulation

can capture not only the global structural behavior in terms of
displacement and acceleration but also the local joint behavior in
terms of stress and strain without a huge computation cost.

Since different types of elements (beam, plate, shell, and solid)
have different number of degrees-of-freedom (DOFs), the multi-
scale FE simulation needs a rational FE coupling method to
combine mixed-dimensional finite elements at their interfaces
into a single structural model. The challenging issue in the multi-
scale FE modeling is therefore how to guarantee the rationality of
the coupling method so that it can achieve both displacement
continuity and stress equilibrium in the region around the inter-
face between the different types of elements.

Broadly speaking, there are two major coupling methods currently
available: volume coupling and surface coupling [5]. Volume coupling
refers to a region in which different models co-exist and it is usually
realized using the Arlequin method [6]. The Arlequin method is
best suited for coupling different physical models such as continuum
particles [7,8] among others. In surfacing coupling, there is no
overlapping of different models and different models can be coupled
using one of the following methods: (a) Lagrange multiplier method;
(b) penalty method; (c) transition element method; and (d) multipoint
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constraint (MPC) method. Both the Lagrange multiplier method and
the penalty method have their own disadvantages: in the former it is
the introduction of extra unknowns and in the latter it is the choice of
the penalty parameter. Transition elements employing either reduced
or full integration can be used for shell–solid transition [9–12], beam–

solid transition [13,14], and beam–shell transition [15,16]. Unfortu-
nately, the transition elements have not been widely adopted because
of its limitations. Transition elements can only be used to a one-to-one
coupling of elements, and different element transitions require differ-
ent formulations which make it difficult and impractical for a
commercial FE code.

The MPC method is an attractive coupling method for coupling
mixed-dimensional elements by using constraint equations for
nodal displacements at the interface. The MPC method can be used
for static and dynamic analysis of linear or nonlinear structures
[17–22]. This method is easy to access in a few commercial FE
codes. For instance, the RBE3 MPC method provided in ANSYS
code [20] can automatically establish constraint equations for
coupling the different types of elements. There are mainly two
types of the MPC method: the rigid interface method and the
deformable interface method. The rigid interface method uses
rigid beams to connect nodes of different types of elements, such
as CERIG in ANSYS and MPC-BEAM in ABAQUS [20,21]. The rigid
interface method, however, yields stress disturbance at the inter-
face because the interface is defined as a rigid interface. The
deformable interface method uses a concept of force distribution
at the interface, such as RBE3 in ANSYS and the distributing
coupling method in ABAQUS. The deformable interface method
allows the interface deformation with stress distributions at the
interface. RBE3 in ANSYS allows the motion of the master node
equal to the average of the slave nodes in which only translational

DOFs of the slave nodes involves in the constraint equations. The
force and moment are distributed to the slave nodes by weighting
factors and the distance from the center of slave nodes times
weighting factors, respectively. The distributing coupling method
in ABAQUS constrains the motions of the coupling nodes to the
motion of a reference node in an average sense. Forces and
moments at the reference node are distributed either as a coupling
node-force only or as a coupling node-force and moment. Both
RBE3 and distributing coupling methods have the sense of force
and moment distribution by means of weighting factors but the
accuracy of stress distribution at the interface resulting from force
and moment distribution by means of weighting factors is ques-
tionable. On the other hand, another deformable MPC method was
proposed based on the direct assumption of stress distribution at
the interface and the equal work done by the stresses and forces at
the interface [18]. As for the scheme of implementing the MPC
method into the finite element software, there are three common
types: penalty scheme; Lagrange multiplier scheme and elimina-
tion scheme [23–25]. The penalty scheme only enforces the MPC
method in an approximate manner: the choice of penalty coeffi-
cient is a dilemma and it can be neither small nor large. The
Lagrange multiplier scheme increases the number of DOFs in the
system and destroys the banded and positive definite nature of
the stiffness matrix. The elimination scheme enforces the MPC
method by eliminating dependent DOFs. It needs more matrix
operations and destroys the symmetry and bandwidth of the
original stiffness matrix, and the choice of independent DOFs is
non-unique. Although the deformable MPC method seems more
rational and effective, inaccurate constraint equations due to
inappropriate stress distribution assumptions may result in stress
disturbance at the interface.

This paper presents a new deformable MPC coupling method that
can achieve both displacement compatibility and stress equilibrium
at the interface between the different element types. The principle of
virtual work is first used to derive both linear force and displacement
constraint equations for the interface. A numerical method compa-
tible with commercial FE codes is developed to figure out the linear
constraint equations which satisfy both displacement compatibility
and stress equilibrium conditions at the interface. The proposed
coupling method is then extended to nonlinear mixed-dimensional
FE coupling problems. Compared with the McCune's method, the
proposed method drops the assumption that beam/plate/shell theory
governs the stress distribution at the interface between elements. To
validate the proposed coupling method, a number of finite element
test cases are finally examined. These cases include linear beam-to-
plate, beam-to-shell and beam-to-solid connections for linear mixed-
dimensional FE coupling, a linear frame structure for structural
multi-scale simulation, and a beam-to-shell buckling problem for
nonlinear mixed-dimensional FE coupling. The computation results
are also compared with those from the existing methods to demon-
strate accuracy and robustness of the new algorithm. While the
method proposed in this paper is suitable for the mixed-dimensional
FE coupling of beam and plate, beam and shell, and beam and solid in
either linear or nonlinear multi-scale simulation of frame structures,
there is a possibility of extending the proposed method to the mixed-
dimensional FE coupling of shell and solid, plate and solid, and other,
but it needs further study.

2. Linear constraint equations

For static linear structural analysis, the interface coupling for
elements of different DOFs can be established using linear constraint
equations. An example of interface coupling for a two-dimensional
beam and plate connection, as shown in Fig. 2, is used to illustrate how
the constraint equations can achieve both displacement compatibility
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Fig. 1. Multi-scale modeling of a frame structure: (a) frame structure and (b) multi-
scale model.
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