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a b s t r a c t

Topology optimization problem requires repeated evaluations of the objective function and design
sensitivity in the design domain with various density distributions. A repeated computations in the
optimization process, requires a large amount of computing time and resources. These issues have
inspired the development of optimization techniques combined with a system reduction. In order to
reduce the system, this study employs a system dynamic condensation method based on selected
primary degrees of freedom. Based on a system reduction, this study performs a topology optimization
to maximize the eigenvalue and linear summation of each eigenvalue. In the optimization procedure,
mode tracking method, called MAC, is used to pursue target modes, and the design sensitivity is
calculated by a method of the rigid body mode separation assuring the reliability of sensitivity regardless
of the design variable perturbation size. Each result of the numerical examples based on the reduction
system is compared to that of the full system. Through a few numerical examples, it is demonstrated that
the proposed method can provide efficient and reliable results in topology optimization.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Traditionally, the size and shape optimization has been the
main stream in the structural optimization field. Besides these two
kinds of optimization fields, topology optimization came into the
limelight within decades. The definition of topology in mathe-
matics stands for the invariant of spatial one-to-one mapping,
which is continuous and includes the inverse mapping. However,
size optimization, which treats the coefficient of a cross section,
has a disadvantage, which is optimized within a given shape.
Shape optimization, which deals with the modification of external
shape, has a disadvantage in that the distorted mesh should be
regenerated when elements are distorted during the optimization
process. However, topology optimization has nothing to do with
these disadvantages but is applicable for design without a basic
layout.

Topology optimization originated as layout optimization by
Rozvany and Prager in the 1960s. After this outstanding work,
Bendsøe and Kikuchi et al. developed topology optimization to
minimize compliance in static problems [1–3]. Then, topology
optimization for maximizing eigen-frequency has been studied by

Ma and Kikuchi [4,5]. Even though many applications of topology
optimization have been studied regarding to the static problem,
topology optimization of dynamic problem has been limited for
some reasons. The change of mode sequence during optimization
of eigen-frequency makes the cost function non-smooth. More-
over, the sensitivity analysis of the cost function could be dis-
continuous and the optimization process of a vibration problem
could be non-convex. The main root of these problems is related to
the mode tracking conditions during the optimization process of
eigen-frequency. If the optimization does not pursue reliable mode
tracking, a proper sensitivity analysis is not guaranteed so that the
improper mode tracking becomes the main obstacle in optimiza-
tion. Then, it is required to pursue the correct target mode during
the process of the topology optimization. Eldred et al. have
proposed two kinds of the mode tracking methods for eigenvalue
problem [6]. One is the higher order eigen-pair perturbation
algorithm and the other is the cross-orthogonality check method.
Even if the higher order eigen-pair perturbation algorithm guar-
antees quite accurate mode, it is not conformable to use the
intermediate process of topology optimization [7]. In this paper,
the cross-orthogonality check method, called modal assurance
criterion (MAC), is used to track target eigenmode. MAC verifies the
correlation between experimental and numerical mode shape [8].
For the application of MAC to the presented mode tracking in
topology optimization, we aim at a standard eigenmode shape as a
target mode shape at initial configuration. And, we compute the
MAC value of the candidate eigenmodes of the updated structure
configure to track the target mode shape in each iteration.
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The optimization process of eigen-frequency needs many repeated
analyses in dynamic problems. In particular, the analysis of a large
scale structure takes enormous computing time. To make up for this
trouble, this study employs the reduction system, which is efficient in
terms of calculating time and reliable in terms of accuracy. We propose
for the first time a methodology of topology optimization combined
with the dynamic condensation system. The reduction system has
been applied to various research fields, such as eigenvalue analysis,
sub-structuring schemes and structural optimization based on sub-
domain [9–11]. The reduction system has been developed to improve
the problems that consume excessive computing time and computer
resources in large-scale analysis. There are two kinds of methods
based on the primary degrees of freedom (PDOFs) and the mode-
based structural reduced order model (ROM) in the reduction system.
We use the reduction method, so called, condensation method, based
on PDOFs which we selected by a two-level condensation scheme
(TLCS) [9].

The key issue in this study is how to perform the structural
topology optimization by combining it with the reduction system.
This study proposes an efficient topology optimization based on
the system reduction. Section 2 briefly introduces the construction
of the reduction system based on the PDOFs. Section 3 presents
the general topology optimization including the mode tracking
method. Section 4 evaluates the formulation of the sensitivity in
topology optimization. Section 5 presents the maximization of the
eigen-frequencies of a beam and plate by the proposed optimiza-
tion method. Through numerical examples, the efficiency and
reliability of the proposed method are demonstrated when the
reduced system is applied to the topology optimization. The
accuracy and efficiency of the reduced system approach for each
example is compared to that of full system.

2. Review of system reduction method

In the process of the topology optimization, the eigenvalue and
its design sensitivity is obtained by the reduction system based on
PDOFs. Because the accuracy of the reduction system is highly
dependent on the choice of PDOFs, the TLCS, which was verified by
previous research, was used for the proper selection of the PDOFs.
This scheme consists of two steps, the selection of the candidate

area and PDOFs. In the first step, the scheme selects the candidate
area by Rayleigh energy ratio. In the second step, the sequential
elimination method (SEM) [12] is applied to determine the final
PDOFs. Fig. 1 is the overall schematic of the TLCS [9]. Fig. 1(a) is the
model configuration for analysis and Fig. 1(b) shows the selected
candidate area, while Fig. 1(c) shows the PDOFs selected by the
SEM. This method, which is based on the Improved Reduced
System (IRS, [13]) was proposed for an efficient reduction system
by Kim and Cho [9]. Section 2.1 and Section 2.2 briefly introduce
the formulation of the two steps for constructing the reduction
system. In the first step, in which the candidate regions for PDOFs
are selected, the modified Rayleigh quotient considering the
density of elements is evaluated to consider the void element in
topology optimization.

2.1. The first stage for selecting the candidate area

2.1.1. Process 1: Extraction of Ritz vectors
To obtain the Ritz vectors, an initial static vector fxn

1g is
calculated by static analysis as Eq. (1a). The first Ritz vector {z1}
is obtained by the mass-normalization procedure of this static
vector as shown in Eq. (1b).

fxn

1g ¼ ½K��1fF1g ðaÞ
fz1g ¼ fxn

1g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fxn

1gT ½M�fxn

1g
q
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where the entity of {F1} is the diagonal term of the mass matrix.
The first Ritz vector which obtained from Eq. (1b) is used to

find the next static vector in Eq. (2a). The ith static vector fxn

i g
which calculated in Eq. (2a) becomes Mass-orthogonal to the
previously obtained Ritz vectors by the Gram–Schmidt procedure
of Eq. (2b). Then, ith Ritz vector {zi} is obtained by the mass-
normalization procedure of Eq. (2c).
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Fig. 1. Schematic of two-level condensation scheme (TLCS).
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