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a b s t r a c t

Bridging domain method (BDM) is a multiscale method which couples molecular dynamics (MD) with
finite element simulations. In this paper, using numerical study we show that time integration step size
and the discretization of Lagrange multipliers can highly impact the capability of BDM in removing
spurious reflections. We present a technique to enhance the performance of bridging domain method
and to alleviate the effects of the two aforementioned factors on the BDM. In our technique, the total
displacement field of the atoms located in the overlapping zone is decomposed into a coarse and a fine
field. The equations of motion of fine scale oscillations are first obtained and then modified to include a
damping term. The damping condition effectively filters out and removes the fine scale oscillations that
cannot pass into the continuum domain; hence eliminates the spurious wave reflections. Using
numerical examples, we show that the proposed enhancement significantly improves the performance
of bridging domain method. This is specially significant when discontinuities such as cracks are present
in the domain or when the integration time step is small.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Molecular dynamics simulations provide vast amount of infor-
mation about material behavior at nanoscale. They have been
particularly used to study how defects such as cracks, grain
boundaries or dislocations affect macroscale processes such as
elasticity or plasticity. However, the high computational costs
associated with atomistic simulations limit their applicability to
systems made of limited number of atoms. Coupled atomistic-
continuum methods have been introduced as a remedy to this
limitation. In the coupled methods, full atomistic resolution is
maintained where deformations are highly inhomogeneous (e.g.,
at the vicinity of defects) and continuum models are used else-
where [1–16]. The challenge lies in appropriate gluing of atomistic
and continuum zones such that the atomistic region behaves as if
the entire domain is atomistic. To achieve this objective, the effects
of the atomistic-continuum interface should be minimized.
In static problems ghost forces can be generated at the coupling
interface [17] and a number of techniques have been developed to
overcome this issue [9,11]. In dynamic problems an additional
difficulty related to the passage of the propagating wave from
atomistic to continuum across the interface is encountered; the

change of the constitutive equations from inherently nonlocal
atomistic to local continuum along with the change of the
resolution from atomistic to continuum lead to spurious wave
reflection at the interface. Since in the coupling methods atomistic
zone usually has a small size, the spuriously reflected wave can
quickly increase the temperature of atomistic zone, whereby
destroys the simulation.

To avoid the spurious wave reflections, the interface between
the atomistic and continuum should be such that coarse scale
information (low frequency waves) can be accurately transmitted
in both directions, whereas the fine scale oscillations which cannot
be transmitted into the continuum zone should be eliminated at
the interface. Several such interfaces have been developed in the
past, among those are coarse-grained molecular dynamics (CGMD)
method [4,5], macroscopic-atomistic-ab initio dynamics (MAAD)
method [6,7], bridging scale method (BSM) [8,18], bridging
domain method (BDM) [9,10], concurrent AtC coupling method
[11,19], embedded statistical coupling method (ESCM) [12] and
heterogeneous multiscale method (HMM) [20,21]. Reviews on
concurrent atomistic-continuum multiscale methods can be found
in [22–25].

Belytschko et al. [9,10] developed a bridging domain method
(BDM) to couple continuum mechanics with molecular models.
Bridging domain method lies in the category of overlapping
domain decomposition coupling methods, or Arlequin method,
which has been developed earlier by Ben Dhia [26–28]. This
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method has been used for modeling cracks and defects in
graphene and carbon nanotubes [9,10,29,30] and has been com-
bined with extended finite element method (XFEM) [31] to study
crack propagation and dislocation emission in nanomaterials
[32,33]. More recently, BDM applications are extended to multi-
scale analysis at finite temperature [34,35].

In the bridging domain method, continuum and atomistic
domains overlap in a bridging (handshaking) domain where a
weight function is used to partition the atomistic and continuum
energy. In the overlapping domain, the positions of atoms and
nodes are not necessarily coincident and the compatibility
between atomistic and continuum domain is imposed by Lagrange
multipliers. This allows to use a uniform mesh in the entire
domain and removes the need for mesh refinement in the over-
lapping region.

In this paper, we first numerically show that the type of the
discretization of Lagrange multipliers and the time integration
step size significantly impact the success of BDM method in
suppressing spurious reflections. Then, we present a new techni-
que to enhance the performance of BDM and to alleviate the
effects of the two aforementioned factors. In this method, the total
displacement field of atoms located in the overlapping zone is
decomposed into a fine and a coarse scale displacement field. The
fine scale displacements corresponds to the oscillations which
cannot be resolved by the finite element mesh and need to be
damped. The elimination of fine scale oscillations is accomplished
by deriving their equations of motion and inserting a damping
term into their equations of motion.

The outline of this paper is as follows. In Section 2, we review
the bridging domain method. In Section 3, we numerically study
the performance of the BDM method and will provide the
motivation of the proposed enhancement. The formulation of the
new enhancement is presented in Section 4. The effectiveness of
the method in removing spurious reflections and in modeling
crack propagations will be investigated using numerical examples
in Section 5. Some conclusions are made in Section 6.

2. Brief review of bridging domain method

2.1. Reference model and notations

In the bridging domain method (BDM), the domain Ω is
composed of an atomistic subdomain, ΩA, and a continuum
subdomain, ΩC, which overlap in a bridging or handshaking
subdomain, ΩB ¼ΩA⋂ΩC, as shown in Fig. 1. The edges of the
atomistic and continuum subdomains in the bridging subdomain
are denoted by ΓA and ΓC, respectively. In this paper, the super-
scripts ‘A’, ‘C’, and ‘B’ identify the variables associated with the
atomistic, continuum, and bridging subdomains respectively.
Accordingly, ΩA

0 , ΩC
0, and ΩB

0 denote the atomistic, continuum,
and bridging subdomains in the initial configuration, respectively,
where the subscript 0 refers to quantities defined at t¼0. We
denote the material coordinates by X or Xi, i¼ 1;…;nd in compo-
nent notation, where nd is the number of spatial dimensions, and
the current coordinates by x. We use subscripts I and J to refer to
FE-nodes, and α and β to refer to atoms. The displacement of atom
α is denoted by dα (or diα in component form). The continuum
subdomain is spatially discretized by a finite element (FE) mesh
and its displacement field is approximated by

uiðX; tÞ ¼ ∑
JAS

NJðXÞuiJðtÞ; ð1Þ

where S is a set of finite element nodes, NJ is the FE shape function
of node J and uiJ is the ith displacement component of node J.

2.2. Governing equations

In the bridging domain method, the total Hamiltonian of the
entire domain is obtained by adding up the Hamiltonian of the
continuum and atomistic domains. To avoid double counting in
the overlapping domain, the Hamiltonian of continuum and
atomistic domains are weighted by a scaling factor ϑðXÞ defined as

ϑðXÞ ¼
0 in ðΩC

0�ΩB
0Þ

½0;1� in ΩB
0

1 in ðΩA
0 �ΩB

0Þ

8>><
>>: ð2Þ

In our numerical calculations, we use a linear scaling factor
defined as [10]

ϑðXÞ ¼ JX�Xp J
JXq�Xp J

ð3Þ

where Xp is the orthogonal projection of X onto ΓA and Xq is the
intersection point of line XpX and ΓC . The total Hamiltonian of the
domain is given by

Hðu;d; λÞ ¼HCðuÞþHAðdÞþGBðu;d; λÞ ð4Þ

where HC is the continuum domain Hamiltonian, HA is Hamilto-
nian from the atomistic domain, and GB is the Hamiltonian
associated with the Lagrange multiplier constraint that imposes
displacement compatibility of the atomistic and continuum
domain at the overlapping domain.

The contribution of the continuum domain in the total Hamil-
tonian is given by

HC ¼ ∑
I;JAS

Z
ΩC

0

ð1�ϑÞ
pCiIp

C
iJNINJ

2ρ0
dΩ

þ
Z
ΩC

0

ð1�ϑÞWCðFÞ dΩ; ð5Þ

where pCiI is the ith component of the linear momentum of node I,
ρ0 is the initial density of the continuum domain, WC is the
internal energy (strain energy) density and Fij ¼ ∂xi=∂Xj is the
deformation gradient. The Hamiltonian of the atomistic domain is

HA ¼ ∑
αAM

ϑα
pAiαp

A
iα

2mA
α

þ ∑
βAM4α

ϑαβVαβ

 !
ð6Þ

where M is the set of all atoms, pAiα is the ith component of the
linear momentum of atom α, mA

α is the mass of atom α, Vαβ ¼ VðrαβÞ
is the potential of the bond between atoms α and β which is a
function of the bond length of two atoms (i.e. rαβ), ϑα ¼ ϑðXαÞ and
ϑαβ ¼ ðϑðXαÞþϑðXβÞÞ=2.

The compatibility of deformation between atomistic and con-
tinuum domain in the overlapping zone can be imposed in
different ways [9,10,36,37]. For example, the compatibility of
deformations can be obtained by requiring displacement of the
atoms conform to the continuum subdomain displacement field at

Fig. 1. Three subdomains in a BDM simulation: atomistic, continuum, and bridging
subdomains.
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