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a b s t r a c t

In this paper, the concept of configurational forces is introduced in the context of finite element mesh
refinement for elastic–ideally plastic problems. This paper also includes the numerical computation of
configurational forces in the elastic and plastic domains. Methods are demonstrated on three plane
problems where the analytical solution is available. The first example is a thick-walled tube loaded by
internal pressure. This simple, one dimensional problem allows computation of configurational volume
forces analytically to validate the finite element (FE) results. The second example is Galin's problem that
involves an infinite plate with a circular hole loaded by biaxial tension at the infinity. This is a two
dimensional problem for which the analytical solution is known with some restrictions for elastic–
ideally plastic case when Tresca yield criterion is considered. The last example introduces another plane
problem that follows Naghdi's solution on infinite wedges. For this, a new analytical solution is
presented for plane stress state using von Mises yield criterion with a uniform shear loading along
the boundary. R-, h-, and combined adaptive procedures are demonstrated on the above examples. Since
exact stress fields are known, the norm of the difference between numerical and analytical solutions is
used as the measure of error.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Configurational mechanics, presented by Eshelby in the early
fifties, is widely used in several areas of theoretical continuum
mechanics and computational mechanics (see [8,10]). The config-
urational force (or often called material force) describes the
change in energy of a given system with respect to the configura-
tion. This means that the energy change caused by the reposition
of an inhomogeneity inside the material could be considered as a
force on it. The configurational force method is widely used in
context with finite elements. One of these applications is the
configurational force driven finite element mesh refinement. The
so-called r-adaptive FE mesh refinement strategy was introduced
by Braun [2] followed by several papers using the concept of
configurational forces to drive h- and rh-adaptive procedures for
purely elastic problems [13,15,23]. Braun's method is based on the
property that the configurational force [10] must be zero in the
interior of the homogeneous material [13]. However, finite
element computations do not fulfill this requirement and nodal

configurational forces appear on interior nodes too. These vectors
are the gradient of the total potential of the system indicating the
dependence of the solution on the initial nodal configuration.
When an optimal mesh is used, internal configurational forces
vanish and the total potential of the structure is minimal. Since
these error configurational force vectors point in the direction of
increasing total potential, moving the nodes in the opposite
direction yields the optimal mesh structure. These methods were
demonstrated in several articles for the elastic case, e.g. [2,9,13,14].
Some numerical shape and structural optimization techniques are
also based on this theory. Furthermore, as the configurational force
indicates the error on finite element meshes, computation of this
quantity is also suitable to drive h-adaptive mesh refinement [13]
and there are a few examples in the literature for the application
of hp-refinement strategy [23]. Most of these papers are dealing
with elastic deformation but configurational forces can also be
computed in elastic–plastic case for small strains [20] or even in
the case of a large strain formulation [17,18,21]. Examples for
elastic–plastic problems can also be found in [24]. Remarkable
practical applications of configurational forces appear in the field
of non-linear fracture mechanics by the numerical computation of
the J-integral, as can be seen in papers of Nguyen et al. [22] and
Simha et al.[24].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/finel

Finite Elements in Analysis and Design

http://dx.doi.org/10.1016/j.finel.2014.08.002
0168-874X/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: henapg@mm.bme.hu (G. Hénap),

szabo@mm.bme.hu (L. Szabó).

Finite Elements in Analysis and Design 92 (2014) 50–59

www.sciencedirect.com/science/journal/0168874X
www.elsevier.com/locate/finel
http://dx.doi.org/10.1016/j.finel.2014.08.002
http://dx.doi.org/10.1016/j.finel.2014.08.002
http://dx.doi.org/10.1016/j.finel.2014.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2014.08.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2014.08.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2014.08.002&domain=pdf
mailto:henapg@mm.bme.hu
mailto:szabo@mm.bme.hu
http://dx.doi.org/10.1016/j.finel.2014.08.002


This paper shows that configurational force based adaptive
mesh refinement strategies are also applicable in the case of
elastic–ideally plastic deformation. The material equilibrium equa-
tion that must be fulfilled to reach optimal mesh configuration is
different from the elastic case. The plastic part of configurational
forces becomes zero in the purely elastic domain. In the following,
small strain is considered. For validation of the finite element
results a few examples, which have analytical solution, are also
presented. These kind of solutions are very limited in case of
elastic–plastic problems. The first test problem is a thick-walled
cylinder subjected to internal pressure. A closed-form solution to
this problem has been derived by Hill [6], and it can also be found
in the literature, e.g., Chakrabarty [3], Lubliner [12]. In this
example, we derive an analytical expression for the volume
configurational force to validate the proposed algorithm. The
second example analyses an infinite plate with a circular hole
loaded by biaxial tension. The material is modelled as elastic–
perfectly plastic with the Tresca yield criterion. This problem has
an analytical solution with certain limitation presented by Galin
[5]. The third example is an infinite elastic–plastic wedge, loaded
by a uniformly distributed shear on its edge. The wedge problem
was investigated by Naghdi et al. [19] subjected to different
loading conditions and yield criteria.

In this contribution, a novel solution is proposed that is new to
the best of our knowledge. In the wedge problem, the stress state
depends on a single variable in cylindrical coordinate system.
However, the presence of a singular point at the corner of the
wedge makes this example excellent to demonstrate adaptive
methods. The solution for the stress field is given in the Appendix.
This paper is organized as follows. The theoretical background of
computing the configurational forces is presented in the second
section. The third section briefly summarizes the finite element
computation technique of nodal error configurational forces. In the
fourth chapter analytical volume configurational forces are pre-
sented through the test problems mentioned above. On these
examples the configurational force driven r-, h- and rh-adaptive
methods are demonstrated.

Notations: Σ; σ — second order tensors, G; g—vector quantities,
divðnÞ—the divergence of n, δ—second order identity tensor,
gradðnÞ—gradient operator, a; b; c; α; β; γ—scalar quantities , �—
complex conjugate of a given quantity. The superscripts T and
�1 denote transpose and inverse, and the following symbolic
operations apply: a � b¼ aibi; ðA � bÞi ¼ Aijbj, A : B¼ AijBij.

2. Theoretical background

In this section, the governing equations of the configurational
force are recapitulated for linear elastic and elastic–perfectly
plastic material models at small deformation. This outline follows
the treatments of Gross et al. [7], Müller et al. [16], and Simha et al.
[24].

Elastic domain: The concept of the configurational force can be
described as an energy change in the system considered with
respect to its configuration (e.g. Kienzler and Herrmann [10]).
Therefore, the gradient of strain energy density function for linear
elastic, isotropic and inhomogeneous material can be expressed as

∂W
∂x

¼ ∂W
∂ϵ

:
∂ϵ
∂x

þ∂W
∂x

����
explicit

; ð1Þ

where ϵ is the linear strain tensor, and the subscript explicit
denotes the explicit derivative of W with respect to the position
vector x.

The elastic constitutive law is defined by

σ ¼ ∂W
∂ϵ

; ð2Þ

where σ is the symmetric stress tensor.
By using this relationship, the Eq. (1) takes the form

∂W
∂x

¼ σ : grad ϵþ∂W
∂x

����
explicit

� σ : grad grad uð Þþ∂W
∂x

����
explicit

; ð3Þ

where u is the displacement field.
The equilibrium equation can be written as

div σþ f ¼ 0; ð4Þ
where f denotes the physical body (or volume) force.

Then, combining (3) and (4), and using the following two
relationships

divðgradT u � σÞ ¼ σ : ðgrad grad uÞþgradT u � div σ; ð5Þ
and

∂W
∂x

� grad W ¼ divðWδÞ; ð6Þ

we obtain

divðWδ�gradTu � σ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}Þ
Σ

þ �gradTu � f �∂W
∂x

����
explicit|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

g

0
BBBB@

1
CCCCA¼ 0; ð7Þ

where Σ is the Eshelby stress tensor and g is the configurational
body force. If the physical body force, f is zero, and a homo-
geneous body is considered, the vector g becomes zero [24].

Finally, we assume that g ¼ 0 , and the function W is defined by

W ¼ 1
2
σ : ϵ: ð8Þ

Then, the configurational force can be obtained by integrating the
first term given in Eq. (7) over the elastic Ωe domain

G¼
Z
Ωe

div
1
2
ðσ : ϵÞδ�gradTu � σ

� �
dV ¼ 0: ð9Þ

Elastic–plastic domain: In the classical theory of plasticity, the
total strain is assumed to be the sum of the elastic and plastic
strain

ϵ¼ ϵeþϵp; ð10Þ
and, in the case of elastic–perfect plastic materials without hard-
ening, the strain energy density function, W depends only on the
elastic strain (see e.g. [16,24]), namely

W ¼WeðϵeÞ: ð11Þ
Recall the elastic constitutive relation given by the expression

σ ¼ ∂W
∂ϵe

: ð12Þ

Then, the gradient of W, using (10) is given by

∂W
∂x

¼ ∂W
∂ϵe

:
∂ϵe

∂x
¼ σ : grad ϵe ¼ σ : grad ϵ�σ : grad ϵp

¼ σ : ðgrad grad uÞ�σ : grad ϵp: ð13Þ
Note that the quantity associated with the explicite derivative ofW
with respect to the position vector x is also omitted (homogeneous
material).

Eq. (13), using (4)–(6), can be rewritten in the following form

div
1
2
ðσ : ϵeÞδ�gradTu � σ

� �
þσ : grad ϵp ¼ 0: ð14Þ

It is noted here that the strain energy density function is defined

by W ¼ 1
2
σ : ϵe, and the body force f ¼ 0 as before.
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