
A nonconformal scheme for scattering analysis from PEC objects

Ali Deng a,b, Liming Zhang a,b,n

a School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, Shandong Province, China
b Shandong Provincial Key Laboratory of Optical Communication Science and Technology, China

a r t i c l e i n f o

Article history:
Received 17 June 2015
Received in revised form
24 September 2015
Accepted 12 October 2015
Available online 28 October 2015

Keywords:
Electromagnetic scattering
Method of moments
Nonconformal meshes

a b s t r a c t

A novel nonconformal scheme for electromagnetic scattering analysis from perfect electric conducting
(PEC) objects is presented in this paper. In this nonconformal scheme, the constant vector basis functions
defined on a single triangle element are used as basis functions to solve the magnetic field integral
equation (MFIE). Several commonly used basis functions for the MFIE are discussed and it is shown that
the use of the new basis functions for the MFIE is reasonable. The construction of constant vector basis
function as well as details for the calculation of the admittance matrix elements resulted from the use of
method of moments (MoM) to the MFIE are given. It is shown that the use of the constant vector basis
functions to the MFIE results in an efficient nonconformal scheme. Numerical results further validate the
effectivity and efficiency of the proposed nonconformal scheme.

& 2015 Published by Elsevier B.V.

1. Introduction

Finite-difference time domain (FDTD) method [1], finite element
method (FEM) [2] and method of moments (MoM) [3] are three
commonly used full-wave numerical methods for the analysis of
electromagnetic problems. Features of these three methods are quite
different. The FDTD method is quite effective for time-domain and
wide-band problems. However, it is not as accurate as the other two
methods. The FEM is usually used for problems associated with
inhomogeneousmedium. But, it needs thewhole volume of the object
to be meshed which results in too many number of unknowns.
Besides, condition number of the corresponding matrix system
resulted from the FEM are usually poor. This makes the solution time
relatively long when iterative method are used to solve the resultant
linear system. Compared with the FDTD and the FEM, the MoM
combined with the integral equation method is particularly attractive
for electromagnetic scattering and radiation problems. This is because
the radiation boundary condition has already been included in the
Green's function used in this scheme. Thus, only the surface or the
volume of the object to be analyzed needs to be meshed. While both
the FDTD and the FEM needs some suitable absorption boundary
conditions for the analysis of electromagnetic scattering and radiation
problems which results in a larger solution domain.

For the analysis of electromagnetic scattering from perfect electric
conducting (PEC) objects, since the unknown equivalent currents only

exists on the surface of a PEC object, the surface integral equation (SIE)
can be used to model the corresponding problem. Then the MoM can
be used to solve the corresponding SIE. In this process, firstly the
surfaces of the corresponding PEC scatterer have to be meshed with
suitable discretized elements. Since triangular meshes can model
arbitrarily shaped scatterer, they are used widely for solution of
integral equation by MoM [4–6]. Secondly, suitable basis functions
should be defined on the corresponding discretized surface of the
corresponding scatterer. Then through the use of the Galerkin's
method, we get the resulted linear system. When the linear system is
solved, we can get the corresponding equivalent surface currents and
other interesting results such as radar cross section (RCS) data.

Basis functions defined on triangular meshes are usually designed
to invoke special properties across internal boundaries of the dis-
cretized meshes. The most frequently used characters of basis func-
tions are their continuity properties across the common edge between
two neighboring patches. For example, the normal components of the
popularly used Rao–Wilton–Glisson (RWG) [4] basis functions are
continuous across the common edge of two neighboring triangular
patches while the tangential components of the n� RWG [7,8] basis
functions are continuous across the common boundaries of the cor-
responding meshes. Since the continuity condition are required for
these basis functions, quality of the discretized meshes are very
important for successful implementation of the MoM. This means that
the discretization is required to be conformal in order to enforce the
continuity condition of basis functions. However, it has been found
that generating a conformal discretization of high-definition targets is
a tedious and time consuming work. Besides, in some cases we may
need to mix different classes of basis functions together for the same
discretized meshes to fully incorporating the known physics of the
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problem. Unfortunately, the requirement of the continuity conditions
for basis functions on discretized meshes makes this process very
complicated if not possible. On the other hand, it has been found that
explicit enforcement of the continuity conditions for basis functions
are not needed in some cases. In two dimensions, it is reported in [9]
that the use of the high order basis function sets eliminates the
explicit enforcement of continuity conditions. In [10], it has also been
found that the continuity constraints can be replaced by a partition of
unity function to maintain the h and p convergence. For three
dimension cases, it has already been proposed in [11] that the
monopolar RWG basis function set which does not enforce any con-
tinuity conditions between neighboring patches can be used directly
to the MFIE for the analysis of electromagnetic scattering problems of
PEC objects. This kind of basis function set is then used in the dis-
continuous Galerkin's method in [12] for electromagnetic wave scat-
tering problems in [12]. In [13], a novel method which use RWG basis
functions but with a volume testing of the EFIE has also been pro-
posed for a nonconformal discretization of the EFIE.

Different from the work in [11,12], we propose to use the piece-
wise constant vector basis functions to the MFIE which results in a
simple and efficient nonconformal scheme of the MFIE. The defi-
nition as well as the construction process for the constant vector
basis functions are presented. Details for the calculation of the
admittance matrix elements are also presented. The nonconformal
discretized meshes used for several PEC scatterers are also shown.
Numerical results for both RCS results and the iterative char-
acteristics of the MFIE using nonconformal meshes show the
advantage of the proposed scheme.

2. Different kinds of basis functions used for the MFIE

We consider the electromagnetic scattering problem for a
conducting object with closed surface S in free space. Suppose the
incident and scattered magnetic fields are denoted by HiðrÞ and
HsðrÞ respectively and the equivalent surface electric currents are
denoted as JsðrÞ. The boundary condition for the magnetic fields
HðrÞ can be expressed as [5]

nðrÞ �HiðrÞ ¼ JsðrÞ�nðrÞ �HsðrÞ ð1Þ
with nðrÞ being the unit normal vector of the surface S. Then the
traditional MFIE can be expressed as

nðrÞ �HiðrÞ ¼ 1
2
JsðrÞ�nðrÞ � p:v:∬S∇Gðr; r0Þ � Jsðr0Þds' ð2Þ

In (1) and (2), r; r0AS, p.v. is the Cauchy principle value integral
and the Green's function Gðr; r0Þ can be expressed as

Gðr; r0Þ ¼ e� jkR=4πR ð3Þ
with R¼ j r�r0 j being the distance between the source point r0

and the field point r and k being the wave number of free space.
Similarly, if the incident electric fields are denoted by EiðrÞ, the

electric field integral equation (EFIE) can be expressed as [4]

�nðrÞ � EiðrÞ ¼ nðrÞ

� ∬S½jωμJsðr0ÞGðr; r0Þ�
j
ωε

ð∇0 U Jsðr0ÞÞ∇0Gðr; r0Þ�ds0 ð4Þ

In (4), μ and ε are respectively the permittivity and permeability of
free space.

To solve the integral equations by MoM, basis functions are needed
to expand the unknown surface currents. The basis functions that
expand the unknown vectors are required to follow the mathematical
constraints inherited from the integral equation formulation. Next, we
analyze several commonly used basis functions defined on triangular
patches for the MFIE. For simplicity, the basis functions and testing
functions discussed in this paper are denoted respectively as bnðrÞ ðn

¼ 1; 2;…NÞ and tmðrÞ ðm¼ 1; 2;…NÞ if the total number of
unknowns is N.

2.1. Basis functions imposing normal component continuity
condition

It can be seen clearly from (4) that the divergence operator is
imposed on the surface currents. In this case, the divergence-
conforming Rao–Wilton–Glisson (RWG) functions which keep the
continuity of the normal component of the surface currents
between neighboring elements are firstly used in [4] to solve the
EFIE. Afterwards, this kind of basis function is also used to solve
the MFIE in [5]. Since JðrÞ is associated with the tangential com-
ponent of the magnetic fields HðrÞ in (1), the continuity condition
for the surface currents JsðrÞ is in fact that for the magnetic fields
HðrÞ.

Let us consider two neighboring triangular elements shown in
Fig. 1. The three unit vectors uðrÞ, τðrÞ and nðrÞ which are ortho-
gonal with each other are shown in this figure. If the basis function
imposing normal component continuity conditions between
neighboring elements, then we have the following equation:

u1ðrÞUbn1 ðrÞ ¼ u2ðrÞUbn2 ðrÞ ð5Þ

Since the basis functions are used to expand the surface currents
which is associated with the tangential magnetic fields, then from
(5), we get

u1ðrÞU ðn1ðrÞ �H1ðrÞÞ ¼ u2ðrÞUðn2ðrÞ �H2ðrÞÞ ð6Þ

which can be further written as

ðu1ðrÞ � n1ðrÞÞUH1ðrÞ ¼ ðu2ðrÞ � ðn2ðrÞÞUH2ðrÞ ð7Þ

τ1ðrÞUH1ðrÞ ¼ τ2ðrÞUH2ðrÞ ð8Þ

That is, from the normal continuity condition (5) for the basis
function, we have derived the tangential continuity condition for
the magnetic fields HðrÞ. Therefore, the normal component con-
tinuity condition for the surface currents JðrÞ is in fact the tan-
gential component continuity condition for the magnetic fields
HðrÞ.
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Fig. 1. Two neighboring triangles.
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