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a b s t r a c t

A new approach for numerically solving flow in Discrete Fracture Networks (DFN) is developed in this
work by means of the Virtual Element Method (VEM). Taking advantage of the features of the VEM, we
obtain global conformity of all fracture meshes while preserving a fracture-independent meshing pro-
cess. This new approach is based on a generalization of globally conforming Finite Elements for polygonal
meshes that avoids complications arising from the meshing process. The approach is robust enough to
treat many DFNs with a large number of fractures with arbitrary positions and orientations, as shown by
the simulations. Higher order Virtual Element spaces are also included in the implementation with the
corresponding convergence results and accuracy aspects.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The present work deals with a new approach based on the
Virtual Element Method (VEM) for the simulation of the flow in
Discrete Fracture Networks (DFNs). DFN models are one of the
possible approaches for simulating subsurface flows and they
consist of a set of planar polygons in 3D space resembling the
fractures in the underground. Each fracture is modelled individu-
ally, as opposed to continuum models with equivalent porosity,
and, for geological formations with a sparse fracture network that
mainly affects the flow path, this approach is recommended [1,2].
DFNs are used in a wide range of applications such as pollutant
percolation, gas recovery, aquifers and reservoir analysis [3,4].

Stationary flow in a DFN is modelled using Darcy's law and
introducing a transmissivity tensor for each fracture that depends
on its aperture and its resistance to flow. The surrounding rock
matrix is considered impervious. The goal is to obtain the
hydraulic head distribution in the system, which is the sum of the
pressure head and the elevation. Fluid can only flow through
fractures and across intersections between fractures, also called
traces, but no tangential flow is considered along traces. The
hydraulic head is a continuous function, but with discontinuous
derivatives across the traces, which act as sources/sinks of flow.
More complex models for the flow in the fractures can be found in
the literature [5]. Since little is known about the subsurface

fractures, stochastic models are used in order to determine dis-
tributions of aperture, hydrological properties, size, orientation,
density, and aspect ratio of the fractures.

Geometrical complexity is the greatest challenge when dealing
with DFN-based simulations. Since the fracture generation has a
random component, many complex situations arise that render
the meshing process very complicated and sometimes impossible,
e.g. very small angles, very close and almost parallel traces, high
disparity of traces lengths, etc. In order to use traditional finite
elements, fracture grids have to match in all the intersections
between fractures, since these are discontinuity interfaces for the
first order derivatives of the solution. All the aforementioned
geometrical configurations complicate the meshing process and
are the biggest obstacle in the discretization of the problem
because it becomes very computationally demanding to obtain a
good mesh from such a badly predisposed geometry. Furthermore,
the meshing procedure depends on the whole DFN and is not
independent for each fracture. When a large DFN is considered
that can have thousands of fractures, mesh conformity require-
ments can lead to a very high number of elements that are far
more than those demanded by the required level of accuracy. In
[6], a BEM (Boundary Element Method) was applied that aims to
minimize core memory usage by defining and storing only a
relation between nodal fluxes and hydraulic head on traces for
each fracture. The problem of obtaining a good globally conform-
ing mesh is the subject of ongoing research. In [7], an adaptive
mesh refinement method is described that aims for a high resol-
ving mesh. Previous works [8,9] suggest a simplification of the
geometry to ease meshing. Monodimensional pipes joining frac-
tures, instead of traces, have been put forward as an alternative in
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[10,11]. In [12], a mixed formulation and a mesh modifying pro-
cedure were used to solve DFNs and reducing the number of ele-
ments for each fracture. Another mixed formulation was used in
[13], where local corrections of traces are applied in order to
obtain a globally conforming mesh. The mortar method was used
to impose conditions between fractures with non-matching grids
to obtain a mixed hybrid formulation in [14], with a subsequent
generalization in [15] that includes trace intersections within a
fracture. A novel approach was proposed in [16–19] in which the
problem was reformulated as a PDE-constrained optimization. The
minimization of a properly defined functional is adopted to
enforce hydraulic head continuity and flux conservation at fracture
intersections. Traditional finite elements (FEM) as well as exten-
ded finite elements (XFEM) were implemented to solve the
problem.

In this work, we aim to provide an easy, natural way for gen-
erating conforming meshes for complex DFN problems using the
VEM. The proposed approach is a generalization of traditional
conforming finite elements, keeping the method as simple and
streamlined as possible. Some of the ideas presented here were
present in a previous work by the authors [20], that introduced
Virtual Elements (VEM) to DFNs. In [20] the VEM is used on locally
conforming meshes and an optimization approach is adopted to
handle the non-conformity of the global mesh. Here both local and
global conformity are enforced, and classical approaches, bor-
rowed from the domain decomposition methods, can be used to
solve the problem. We make absolutely no assumptions on the
meshing procedure, which is done independently for each fracture
and without any consideration of the position of the traces. Traces
are not modified in any way, and using some of the features of the
VEM, local and global conformity for the mesh is obtained by
means of splitting the original elements of the meshes indepen-
dently generated on each fracture into polygons of an arbitrary
number of vertices.

Using Lagrange multipliers we obtain a hybrid system that can
be solved with different methods, including FETI algorithms for
domain decomposition.

Section 2 provides the formulation of the DFN problem in the
present context, whereas a brief summary of the VEM is reported
in Section 3, and in Section 4 the proposed method is described in
detail. Numerical results are presented in Section 5, where some
convergence results are given and the applicability of the method
to DFNs is discussed.

2. The continuous problem

Let us consider a set of open convex planar polygonal fractures
Fi �R3 with i¼ 1;…;N, with boundary ∂F . Our DFN is Ω¼⋃iFi,
with boundary ∂Ω. Even though the fractures are planar, their
orientations in space are arbitrary, such that Ω is a 3D set. The set
ΓD � ∂Ω is where Dirichlet boundary conditions are imposed, and
we assume ΓDa∅, whereas ΓN ¼ ∂Ω⧹ΓD, is the portion of the
boundary with Neumann boundary conditions. Dirichlet and
Neumann boundary conditions are prescribed by the functions hD

AH1=2ðΓDÞ and gNAH�1=2ðΓNÞ on the Dirichlet and Neumann part
of the boundary, respectively. We further set ΓiD ¼ΓD \ ∂Fi,
ΓiN ¼ΓN \ ∂Fi, and hDi ¼ hD

jΓiD
and gNi ¼ gNjΓiN

. The set T collects all
the traces, i.e. the intersections between fractures, and each trace
TAT is given by the intersection of exactly two fractures,
T ¼ F i \ F j, such that there is a one to one relationship between a
trace T and a couple of fracture indexes fi; jg ¼ I ðTÞ. We will also
denote by T i the set of traces belonging to fracture Fi.

Subsurface flow is governed by the gradient of the hydraulic
head H¼Pþζ, where P ¼ p=ðϱgÞ is the pressure head, p is the

fluid pressure, g is the gravitational acceleration constant, ϱ is the
fluid density and ζ is the elevation.

We define the following functional spaces:

Vi ¼H1
0ðFiÞ ¼ vAH1ðFiÞ : vj ΓiD ¼ 0

n o
;

VD
i ¼H1

DFi ¼ vAH1ðFiÞ : vj ΓiD ¼ hD
i

n o
;

and

V ¼ v : vj Fi AVi; 8 i¼ 1;…;N; γT ðvj Fi Þ ¼ γT ðvj Fj Þ; 8TAT i; fi; jg ¼ I ðTÞ
n o

;

where γT is the trace operator onto T. It is then possible to for-
mulate the DFN problem, given by the Darcy's law in its weak form
on the fractures with additional constraints of continuity of the
hydraulic head across the traces: for i¼ 1;…;N, find HiAVD

i such
that 8vAV

XN
i ¼ 1

Z
Fi
Ki∇Hi∇vj Fi dFi ¼

XN
i ¼ 1

Z
Fi
f ivj Fi dFiþ 〈gNi ; vj ΓNi

〉
H � 1

2ðΓNi
Þ;H1

2ðΓNi
Þ

� �
;

γT ðHiÞ ¼ γT ðHjÞ; 8TAT ; fi; jg ¼ I ðTÞ

where Ki is the fracture transmissivity tensor, that we assume is
constant on each fracture. The second equation represents the
continuity of the hydraulic head across traces. On each fracture of
the DFN the following bilinear form ai : Vi � Vi↦R is defined as

aiðHi; vj Fi Þ ¼
Z
Fi
Ki∇Hi∇vj Fi dFi: ð2:1Þ

3. The Virtual Element Method

This section provides a quick overview of the VEM, recalling the
main features useful in the present context. We refer the reader to
the original paper [21] for a proper introduction and to [22] for a
guide on implementation. Further developments can be found in
[23–26]. The VEM has also been applied to problems in elasticity
[27], plate bending [28], the Stokes problem [29] and has sparked
interest in other applications as well.

Borrowing ideas from the Mimetic Finite Difference method
[30,31], the VEM can be regarded as a generalization of regular
finite elements to meshes made up by polygonal elements of any
number of edges. The discrete functional space on each element
has, in general, not only polynomial functions but also other
functions that are only known at a certain set of degrees of free-
dom. Given a bilinear form to be approximated with the VEM, our
goal is to build a discrete bilinear form that coincides with the
exact one when at least one of the arguments is a polynomial. For
the other cases, a rough approximation that scales in a desired way
is enough to obtain the desired convergence qualities of the
method.

Given a domain F �R2, a mesh τh on F, made of polygons fEg
with mesh parameter h (i.e. the square root of the maximum
element area), and the space of the polynomials of maximum
order k, Pk, let us define the local space VE

k;h for a given polynomial
degree k as

VE
k;h ¼ vhAH1ðEÞ : vhj ∂EAC0ð∂EÞ; vhj eAPkðeÞ 8e� ∂E; ΔvhAPk�2ðEÞ

n o
where ∂E is the border of E, and e an edge.

From the above definition it is clear that the space PkðEÞ is a
subset of VE

k;h. We define the following degrees of freedom for each
element E:

� The value of vh at the vertices of E;
� The value of vh at k�1 internal points on each edge of E;
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