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a b s t r a c t

Although different discrete formulations for contact problems have been widely studied during the last
decade, the numerical simulation of complex industrial applications is still challenging. While suitable
Lagrange multiplier based formulations are well-known for their consistency and stability in the case of
classical model problems of Coulomb type, rough surface contact laws and additional multi-point con-
straints are much less understood. In this paper, we focus on a quadratic finite element approach for
quasi-static calculations and extend ideas from our previous work on constitutive contact laws combined
with suitable solutions for multi-point constraints like cyclic symmetry on the contact boundary. The
popular dual mortar method is used to enforce the contact constraints in a variationally consistent way
without increasing the algebraic system size. To avoid possible consistency errors of the dual mortar
approach in case of large curvatures or gradients in the contact zone, an alternative quadratic Petrov–
Galerkin mortar formulation is presented. Numerical examples demonstrate the robustness of the
derived numerical algorithm. Special focus is set to industrial motivated applications involving large
deformations and plastic effects as well as rough surfaces on the micro-scale.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Although a lot of progress has been made in the implementa-
tion of contact algorithms in commercial codes, solving non-linear
contact problems within the FEM framework is still a challenging
task when facing large plastic deformations, non-linear material
laws and multi-constrained contact problems of industrial rele-
vance. This led to new research activities in this field. For a more
general overview on contact problems, we refer to the mono-
graphs by Johnson [1] or Bowden/Tabor [2] for contact between
rough surfaces, the monographs by Kikuchi/Oden [3] and Eck [4]
for existence and uniqueness results, to the monographs by Will-
ner [5], Laursen [6] and Wriggers [7] for computational aspects
and to the monograph by Cotrell/Hughes/Bazilevs [8] for iso-
gemetrical formulations.

The most popular approaches to enforce the contact conditions
are the penalty method and the Lagrange multiplier method or
combinations of both like the augmented Lagrange method or the
perturbed Lagrange method. Within the penalty framework a
spring between a slave location and a master surface is generated
modelling the contact traction as a function of the displacements,

if the non-penetration condition is violated. This approach is often
combined with a node-to-surface formulation [9]. More recent
contact formulations combine the penalty method with a Gauss
point-to-surface formulation [10,11] to overcome the drawbacks of
the node-to-surface formulation.

If contact problems between two deformable bodies and non-
matching meshes are considered, the Lagrange multiplier setting
is strongly related to mortar methods introduced originally in the
context of domain decomposition techniques by Bernardi [12] and
Ben Belgacem [13]. Mortar methods are characterized by the
introduction of an additional variable to model the traction across
the interface and a weak formulation of the interface constraints
leading to a surface-to-surface approach. They were adapted to
small deformation contact problems by Ben Belgacem [14] and
later expanded to large deformation contact [15], curved interfaces
and large sliding [16,17] and dynamical problems [18–20].

Among the mortar methods, the dual mortar method [21] has
become of interest [22–24] since it enforces the non-penetration
condition in a variationally consistent way without increasing the
system size. Exploiting the duality between displacement and
traction spaces in the definition of the discrete nodal basis func-
tions, the Lagrange multiplier can be locally condensed from the
global system before solving. Thus a pure displacement based
system results in each load-step. Combined with a semi-smooth
Newton method [25,26], one obtains a flexible, robust and efficient
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tool for contact problems since all non-linearities of the system
(material, geometry and contact conditions) can be handled within
the same iteration loop.

Another current area of research is the isogeometric analysis
for contact problems to enable a tighter connection between CAD
and FEA. Here the same smooth and higher order basis functions
are used for the representation of the CAD geometry as well as for
the FEA solution fields. Although showing very promising results
in the field of domain decomposition [27] or in contact simulation
combined with a Gauss point-to-surface [28–30] or a mortar for-
mulation [30–34], the isogeometric methods complicate the local
problem treatment due to the broader support. This possibly
results in inaccuracies in the boundary between contact and no-
contact regions [29] and can be seen as a limitation to industrial
applications. Therefore this paper uses the well studied dual
mortar method in combination with quadratic finite elements as a
reasonable compromise between linear finite element formula-
tions and the full isogeometrical approach.

Most publications dealing with the mortar method restrict
their considerations to linear finite elements. But for industrial
applications, these possibly show numerical artefacts like shear
locking, volumetric locking and hour-glassing. Quadratic finite
elements on the other hand approximate curvilinear interfaces
more accurately and lack these numerical artefacts while at the
same time avoiding the costly step switching to the isogeometrical
approach. Thus they are quite attractive from the point of accuracy
and computational complexity. Quadratic finite element formula-
tions have been studied for the standard mortar formulation by
Puso et. al. [16] and for the dual mortar formulation by Popp et. al.
[35] expanding the ideas from Lamichhane and Wohlmuth [36].
Here these ideas are picked up and combined with the previous
work of the authors on constitutive contact laws due to rough
surfaces on the micro-scale [37,38].

Another critical point dealing with the dual mortar method can
arise in set-ups with curved interfaces leading to a possibly non-
physical evaluation of the weighted dual gap due to the non-
positive part of the dual basis functions. A similar issue has also
been regarded in case of mesh-tying and simple contact situations
in [39]. In case of general contact problems, the problem with the
dual gap can be avoided using a Petrov–Galerkin dual mortar
formulation combining the benefits of the standard and the dual
Lagrange multiplier method in the linear setting [40]. Here this
idea is picked up and extended to quadratic finite elements with
microscopic rough surfaces.

The third criteria bridging the gap to industrial applications of
the dual mortar method is the ability to handle hanging nodes on
the slave surface or single and multi-point constraints like direc-
tional blocking and cyclic symmetry in the contact zone. For the
latter case, this results in an over-constrained system for these
slave nodes carrying both, the Lagrange multiplier and a multi-
point constraint. Here we extend an idea presented in [41] for
mesh tying. This also solves the problem of hanging nodes on the
slave surface.

The outline of the present work is as follows: We start with a
brief problem definition in Section 2. The extension of the dual
mortar method with regularized contact conditions to quadratic
elements is presented in Section 3. Two different approaches are
studied: a quadratic–quadratic method and a quadratic–linear
method. In Section 4, the quadratic–linear dual mortar formula-
tion is combined with a Petrov–Galerkin approach to overcome
the problem with the dual gap. The adoption of the algorithm
solving over-constraints or hanging nodes is presented in Section
5. In Section 6, various numerical examples demonstrate the
robustness of the derived algorithms. The examples involve plastic
effects as well as rough surfaces on the micro-scale. Special focus
is set here to industrially motivated examples: a film forming

process, a fir tree contact in an abstract turbine and a complex disk
blade foot contact with a retainer.

2. Problem definition

We start with a brief overview on the quasi-static 3D two-body
contact problem in a non-linear elasticity setting [3,5]. As one can
see in Fig. 1, the two contacting bodies, a slave body s and a master
body m with domains ΩαAR3, α¼ s;m, are undergoing motion
during the time interval 0; T½ � described by the mapping φα :
Ωα � 0; T½ �-R3, Xα↦xα ¼φα Xα; t

� �
; α¼ s;m, which maps mate-

rial points Xα of the reference configuration to the current con-
figuration xα . The displacements are defined as u X; tð Þ ¼φ X; tð Þ�X
with u¼ ðus;umÞ onΩ¼Ωs �Ωm. The boundary of the bodies ∂Ωα

is divided into three disjoint sets, the Dirichlet boundary Γα
D, the

Neumann boundary Γα
N and the potential contact boundary Γα

c

with their spatial counterparts γαD, γ
α
N and γαc . It holds Γ

α
D[

Γ
α
N [ Γ

α
c ¼ ∂Ωα . In terms of the displacements u, the deformation

gradient F ¼∇½XþuðX; tÞ�, the right Cauchy–Green tensor C ¼ FTF
and the Green–Lagrange strain tensor E¼ 1=2ðC�1Þ ¼ 1=2ð∇uþ
∇uT þ∇u∇uT Þ can be defined. Non-linear material laws are con-
sidered assuming the existence of an energy density W ¼WðCÞ
including isotropic plasticity with multiplicative split [42–44].

The strong form of the two-body contact problem. Find uα : Ωα �
½0; T �-R3 satisfying

balance
equation

∇ � Pαþρα0b
α ¼ 0;

n
in ð0; T � �Ωα; ð1aÞ

boundary
conditions

uα ¼ uα; in ð0; T � � Γα
D;

Pαn¼ tα; in ð0; T � � Γα
N ;

Pαn¼ tαc ; in ð0; T � � Γα
c ;

8>><
>>: ð1bÞ

initial
conditions

uα �;0ð Þ ¼ uα0 ; in Ωα;
� ð1cÞ

where P is the first Piola–Kirchhoff stress tensor. The first equation
describes the balance of momentum with ∇ � Pα being the internal
forces and ρα0b

α
being the body forces acting on Ωα. On the

Dirichlet boundary, we assume uα ¼ 0 and on the Neumann
boundary Pαn¼ tα, where tα is a given surface force. The contact
traction tαc and the actual contact zone are not known a priori and
have to be determined numerically. For the quasi-static approx-
imation used in this paper, the inertia forces are neglected and the
time interval ½0; T � is split into small load increments
t0 ¼ 0;…tn ¼ T .

For the contact constraints, we define for each point on the slave
surface the orthogonal system ðn; τ1; τ2Þ, with n¼ nðX; tÞ being the
current normal on the slave surface in the point X at time t and
τ ¼ ðτ1; τ2Þ the corresponding tangents, see Fig. 1. In terms of this
nomenclature, we define the projection operator Pt : Γ

s
c-Γm

c , X⟼
PtðXÞ which takes a point X of the slave surface in the current
configuration and projects it onto the master surface in direction of
the current normal nðX; tÞ, see Fig. 1. With the projection operator
Pt, the gap function in the normal direction can be defined for the
current configuration GnðXs; tÞ≔½XþuðX; tÞ�n ¼ nT � ðφsðXs; tÞ�
φmðPtðXsÞ; tÞÞ. Finally the Lagrange multiplier is defined as the
negative contact traction on the slave side λ¼ �tsc .

Now the normal contact conditions with regularization due to
the roughness on the micro scale on Γc

s can be stated as follows,
see Fig. 2(a) and (b):

u½ �n�Gc
nðλnÞrg04λnZ04λn � u½ �n�Gc

nðλnÞ
� �¼ 0:

Here the linearised version of the normal contact is utilized
assuming small deformations on the contact boundary with
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