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a b s t r a c t

The shape sensitivity analysis using the direct differentiation method is developed for the case of axi-
symmetry with superposed torsion in the framework of finite strains and elastic material behavior. The
accuracy of this method is compared to results obtained by the finite difference method in two simple
examples.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In case of axisymmetric or near-axisymmetric geometries, gen-
eralized axisymmetry offers the possibility to reduce a three-
dimensional model to a two-dimensional model with additional
degrees of freedom in tangential direction. Generally speaking, the
geometry is defined in a plane, and a discrete Fourier expansion
is operated in tangential direction, in order to take into account
either a non-axisymmetric geometry or, as in most cases, non-
axisymmetric loads. The introduction of a single degree of freedom
in tangential direction enables the treatment of axisymmetry with
superposed torsion. The generalized axisymmetry thus offers the
possibility to strongly reduce the computational effort by reducing
the number of degrees of freedom in comparison to a full three-
dimensional model. This may especially be of interest in optimi-
zation or inverse problems, where the same finite element model
has to be recomputed a significant number of times. An additional
advantage of an axisymmetric model concerns contact mechanics,
as the treatment of contact surfaces in three dimensions is redu-
ced to that of contact curves in two dimensions, which greatly
simplifies modeling and enables the use of methods for more
efficient contact treatment, like for example contact surface dis-
cretizations with C1-continuity [1].

Among the first authors to produce a finite element formula-
tion for generalized axisymmetry are [2,3] for linear elasticity
and [4] for inelastic materials, both at small strains. Finite strain
formulations for generalized axisymmetry in solid mechanics
have been presented in [5], and later on in various contexts like

thermomechanical homogenization [6], mixed or enhanced strain
formulations [7–9], ALE formulations [6], consolidation analysis
[10], or others [11,12]. Contact mechanics in the context of gen-
eralized axisymmetry has been treated in [14], for example. One of
the major challenges in finite strains is that the base vectors vary
with position [13]. The treatment of generalized axisymmetry may
be executed either in mathematical or physical coordinates [15],
using different ways to arrive at the equations of virtual work.
Different mathematical concepts are use for an efficient treat-
ment of generalized axisymmetry. For example, use is made of a
mathematical shifter tensor in [16] for deriving the kinematics of
generalized axisymmetry. In [5], the finite element equations use
cylindrical coordinates for the description of the geometry, but the
displacements are kept in Cartesian coordinates, in order to avoid
displacement locking. Issues related to the numerical integration
of axisymmetric finite element formulations are discussed in [17],
an improved treatment of incompressibility is detailed in [18] and
methods for reducing mesh locking in the context of axisymmetry
are given in [19–21], for example.

Sensitivity analysis, i.e. the calculation of derivatives with
respect to model parameters like material or shape parameters,
amongst others, is useful in gradient-based solution methods of
inverse problems or shape optimization. Various aspects of sen-
sitivity analysis in standard axisymmetry have been presented in
[22–24], for example. Recently, the sensitivity analysis using the
adjoint state method for generalized axisymmetry with fully
asymmetric loading has been presented in [25] for the case
of small strains. In the present work, sensitivity analysis based
on the direct differentiation method is presented for finite
strains for the most simple case of generalized axisymmetry, i.e.
axisymmetry with superposed torsion. First, the kinematics of
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generalized axisymmetry are outlined. Then, the linearization and
sensitivity analysis of the kinematic quantities are presented and
introduced into the virtual work equation. With the sensitivity of
the Cauchy stress, the discretized formulation of the linearized
virtual work equation is given. Finally, the performance of the
sensitivity analysis is assessed in two examples by comparing the
sensitivities obtained by direct differentiation to those obtained by
the finite difference method.

2. Generalized axisymmetry

2.1. Kinematics

According to [13], the geometry x in the current state, descri-
bed by the coordinates r, z and ϕ,

x¼ rerþzez; ð1Þ
is related to the initial geometry with coordinates R, Z and Φ
through the radial displacement u, the vertical displacement v and
the angular displacement θ:

r¼ RþuðR; ZÞ
z¼ ZþvðR; ZÞ
ϕ¼ΦþθðR; ZÞ: ð2Þ
The current basis vectors are er , eϕ and ez , the first two depending
on ϕ. Then, the deformation gradient can be expressed as
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2.2. Variational calculus

Taking into account that in polar or cylindrical coordinates, the
non-zero variations of the basis vectors are

δer ¼ δθ eϕ
δeϕ ¼ �δθ er ; ð4Þ

the variation of the deformation gradient, Eq. (3), becomes
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With the partial velocity gradient
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and the sparse anti-symmetric tensor

δΞ¼
0 0 �δθ
0 0 0
δθ 0 0

0
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1
CA; ð7Þ

the variation of the deformation gradient can be expressed as

δF¼ δ ~LFþδΞ F; ð8Þ
where the last term in Eq. (5), which stems from the basis varia-
tion, equals the last term in Eq. (8). The variation of the velocity
gradient δL is subsequently obtained by multiplying Eq. (8) by the
inverse of the deformation gradient, yielding

δL¼ δF F�1 ¼ δ ~LþδΞ: ð9Þ

2.3. Linearization and shape sensitivity

In opposition to sensitivities of kinematic entities with respect
to material parameters, where the sensitivities correspond to a
linearization, shape sensitivities include additional terms because
the initial and current coordinates include the shape change. Thus,
for shape sensitivities, Eq. (2) has to be rewritten using a reference
geometry, Xr , a design velocity V and a parameter τ quantifying
the design change, as described in [26,27]. In the following, the
sensitivity of a generic variable α, designating either a scalar or a
first or second order tensor, is defined as

α½ �⋄ ¼ lim
τ-0

α XrþτV Xrð Þð Þ�α Xrð Þ
τ

: ð10Þ

It should be noted that the design change is prescribed on the
boundary of the solid, but the way the resulting design velocity
propagates into the interior of the solid is determined using
methods like the finite difference method, isoparametric mapping,
boundary displacement method or fictitious load method [26,27].
In the present work, the boundary displacement method is used.
In generalized axisymmetry, the shape change only affects the in-
plane initial coordinates, i.e. no shape change in tangential direc-
tion, or shape change dependency in tangential direction, takes
place. Thus one can extend Eq. (2) into

r¼ RrþVrτþuðR; ZÞ
z¼ ZrþVzτþvðR; ZÞ
ϕ¼ΦþθðR; ZÞ: ð11Þ
The linearization of the deformation gradient gives a similar result
to Eq. (5), notably
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The last term in Eq. (12) comes from the dependency of the initial
geometry on the shape velocity in the differentiation with respect
to the initial geometry, as explained in [27]. Multiplying Eq. (12)
with the inverse of the deformation gradient, one gets

L½ �⋄ ¼ F½ �⋄ F�1 ¼ ~L
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þ Ξ
� �⋄�F

∂V
∂x

; ð14Þ

where
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and the tensors ~L
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and Ξ� �⋄ are defined as
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Eqs. (16) and (17) are similar to the definitions of the respective
variations in Eqs. (6) and (7), respectively, with the differ-
ence that the former use derivatives of sensitivities of the coor-
dinates, whereas the latter use derivatives of the variations of the
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