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A new methodology for the geometrically nonlinear analysis of orthotropic membrane structures using
triangular finite elements is presented. The approach is based on writing the constitutive equations in
the principal fiber orientation of the material. A direct consequence of the fiber orientation strategy is
the possibility to analyze initially out-of-plane prestressed membrane structures. An algorithm to model
wrinkling behavior is also described. Examples of application to a number of membrane structures are
presented.
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1. Introduction

Membrane structures are used for many purposes in engineering
and architecture. They are typically built with very light materials
which are optimally used. These structures are characterized because
they are only subjected to in-plane axial forces. Examples include
textile covers and roofs, aircraft and space structures, parachutes,
automobile airbags, sails, windmills, human tissues and long span
structures.

A membrane is essentially a thin shell with no flexural stiff-
ness. Consequently a membrane cannot resist any compression at
all. However, membrane theory accounts for tension and compres-
sion stresses, and the need for a computational procedure that takes
into account tension stresses only is needed. This effect is modeled
in this work with a wrinkling algorithm. In membrane theory only
the in-plane stress resultants are taken into account. The position
of points on the two-dimensional surface in the Euclidean space
gives the deformation state for a membrane. A numerical solution
for membranes may be found using the finite element method. Finite
element analysis of membrane structures for small deformations can
be found in Zienkiewicz and Taylor [1], Cook et al. [2] or Oñate [3].
Theory for large deformations of thin membranes and shells have
been proposed by Simo and Fox [4], Simo et al. [5], Bütcher et al. [6]
or Braun et al. [7]. A general formulation for membranes based on
curvilinear coordinates is given in Bonet et al. [8] and Lu et al. [9].
Taylor [10] proposed a large displacement finite element formula-
tion of a membrane using three-noded triangular elements based on
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rectangular Cartesian coordinates. Details of the various terms in-
volved are given in Valdés [11]. This work has been generalized for
different finite elements by Rossi [12].

Somemembrane structures have a very low flexural stiffness that
can support a small amount of compressive stress before buckling
appears. In order to avoid compression stresses, membranes are pre-
stressed. Levy and Spillers [13], Raible [14] and Gil [15] use a pre-
stressed method to analyze membranes which are initially flat in
the Euclidean space. An approach that includes curved prestressed
membranes using a projection scheme can be found in Bletzinger
and Wüchner [16].

In the present work, the analysis of initially curved prestressed
membranes is performed using a fiber orientation strategy, which
is an extension of the work of Valdés et al. [17,18]. A deep study
for prestressed and orthotropic membranes can be found in Valdés
[19]. The fiber orientation approach here presented allows to analyze
orthotropic membranes.

2. Formulation

For the membrane formulation a curvilinear coordinate system
based on differential geometry of surfaces is used [9,16,20]. Greek
indices on the membrane mid-surface take on values of 1 and 2 in
a plane stress state in the Euclidean space.

The position vectorX on the surface in the reference configuration
�0 is defined by two independent curvilinear coordinates �1 and �2,
shown in Fig. 1, as

X = X(�1,�2) (1)

The position vector x on the surface in the current configuration �
is given by

x = x(�1,�2, t) (2)
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Fig. 1. Curvilinear coordinates for a surface.
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Fig. 2. Covariant base vectors forming a tangent plane.

The convected covariant base vectors of the curvilinear coordinate
system on �0 and � are defined, respectively, as

G� = �X
��� , g� = �x

��� (3)

where the covariant base vectors G� and g� form a tangent space
TXB to the membrane surface and in general they are neither unit
vector nor orthogonal to each other, as shown in Fig. 2.

The surface normals are defined by

G3 = G1 × G2, N = G3

‖G3‖
, g3 = g1 × g2, n = g3

‖g3‖
(4)

in the reference and current configurations, respectively. The nor-
mals are normalized given a unit vector. The covariant components
of the metric tensors are defined by

G�� = G� · G�, g�� = g� · g� (5)

for the reference and current configurations, respectively. The con-
vected contravariant base vectors at �0 and � are given, respectively,
by

G� = G�� · G�, g� = g�� · g� (6)

where the contravariant components of the metric tensors are
obtained from

[G��] = [G��]
−1, [g��] = [g��]

−1 (7)

for the corresponding configurations. When the contravariant base
vectors are known, the covariant base vectors can be obtained from

G� = G�� · G�, g� = g�� · g� (8)

for the reference and current configurations, respectively. The covari-
ant and contravariant base vectors define the scalar product identi-
ties

G� · G� = ��
�, g� · g� = ��

� (9)

where the Kronecker delta is given by

��
� =

{
1 when � = �
0 otherwise

(10)

The deformation gradient tensor F in curvilinear coordinates is

F = g� ⊗ G�, FT = G� ⊗ g�, F−1 = G� ⊗ g�, F−T = g� ⊗ G� (11)

Substituting Eq. (11) into the Green–Lagrange strain tensor yields

E = 1
2 (F

T · F − I) = 1
2 (G

� ⊗ g� · g� ⊗ G� − G��G
� ⊗ G�) (12)

which components for the membrane surface in a plane stress state
are

E = E��G
� ⊗ G�, E�� = 1

2 (g�� − G��) (13)

Using an appropriate constitutive equation to relate the second
Piola–Kirchhoff stress tensor and the Green–Lagrange strain tensor
in curvilinear coordinates, the components of the stress tensor are
defined as

S = S��G� ⊗ G� (14)

Finally, the virtual internal work is

�Wint =
∫
�0

�E��S
�� d�0 (15)

where all the tensor components are expressed in curvilinear coor-
dinates.

2.1. Pressure follower forces

An important case for geometrically nonlinear analysis of mem-
brane structures is that of uniform normal pressure follower forces.
These forces change their direction each time the normal to the sur-
face changes in the current configuration.

Consider a membrane element with an applied uniform pressure
p acting on the current configuration having a pointwise normal n.
Then the traction force vector t is expressed as pn, and the corre-
sponding virtual external work in the current configuration is

�Wext =
∫
�

�u · pnd� (16)

3. Fiber orientation

The idea for the fiber orientation approach comes from the man-
ufacturing process of membrane structures built with orthotropic or
compositematerials. A reference principal fiber direction is needed in
these cases to perform the finite element analysis correctly. Even for
isotropic materials the reference principal fiber direction is needed
if the membrane has an initial prestressed field. With the method-
ology proposed here, a prestressed field for orthotropic materials is
also possible.
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