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Rapid reanalysis of eigensolutions after modification is a problem of considerable practical importance.
Several methods have been developed for computing eigenvalues by using modified parts. This paper pro-
poses just such a method based on inverse power method, using the DOF of only the modified part. This
approach enables exact solutions for eigenvalues to be found quickly, regardless of the magnitude of the
modification, using the degree of the condensed modified part. The advantages of the proposed method
are examined comparing the solutions of inverse power method by several numerical examples. This
approach will be useful for a modified system with large degrees of freedom and small modification part.
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1. Introduction

Vibration engineering encompasses a wide variety of fields, from
mechanical vibrations to electrical oscillations and the swaying of
large structures. Dynamic analysis of eigenvalues and eigenvectors
during the free vibration of such systems (kinetics) is a fundamen-
tal branch of engineering, and a large number of numerical methods
have been proposed for efficiently performing such analyses. Recent
advances in the finite element method (FEM) and in large-scale com-
puting have enabled analysts to treat many more degrees of free-
dom (DOF), and increasingly versatile software is being developed to
accommodate these factors. However, if any parameter is changed
(e.g., shape, material, initial conditions or environmental conditions)
in a previously analyzed system, the entire system has to be rean-
alyzed. Eigenvalue analysis is a much more arduous task than the
corresponding static analysis, and the computation time for the for-
mer is generally several times or even several tens of times greater
than that for the latter. This can make the process quite expensive if
a system undergoes multiple revisions, since analyzing the system
after the revision requires just as much time, labor and money as
analyzing the original system.

“Reanalysis” is the term used to describe the partial analysis (as
opposed to a full analysis) that is performed in order to obtain data
efficiently when a portion of a matrix has been altered due to a
design revision or some other change. If a convenient method can be
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found for performing reanalysis that utilizes the previously calcu-
lated eigenvalues and eigenvectors, it will be very useful for solving
eigenvalue problems involving partially altered matrices. Reanalysis
methods have received intense attention, and many papers have ad-
dressed the problem of changes in eigenvalues in locally modified
systems [1-9]. Many of these papers used perturbation theory [1,4,7].
Fox and Kapoor [1] and Rogers [7] applied first-order differential to
the eigenvalues and eigenvectors of the design variables. This kind
of perturbation-based solution method is valid when there are rel-
atively small adjustments to the design variables and when the ini-
tial values are assumed to be unchanged. However, if the changes to
the design variables are large, these approaches generally offer low
accuracy even when the perturbation order is increased.

Hirai et al. [2] demonstrated a way to obtain the exact eigenval-
ues and eigenvectors using only the degree of the modified part,
and Parazzola et al. [6,10] applied this method to theoretical solu-
tions for eigenvalues and eigenvectors in damped systems. These
approaches use the eigenvalues and eigenvectors of the unmodified
system to determine exact solutions on the basis of a fundamental
formula having the same degree as the matrix representing the
modified system. They remain valid regardless of the magnitude of
the modifications. If eigenvalue problems can be reanalyzed using
such a condensed equation, it will mean that matrices can be sim-
plified to lower degrees, which is a very effective technique for re-
ducing the calculation time. This fundamental equation is nonlinear
and it can be used to solve a matrix equation consisting of rational
functions. It is very time consuming to solve this kind of problem
by trial and error and such a process does not indicate the order of
the eigenvalues. Furthermore, there is little prospect of achieving
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a stable calculation process using the Newton—Raphson method or
other methods in which the differential coefficients are set to ap-
propriate values for local solutions and the initial estimate must be
reasonably close to the actual solution (since the process becomes
unpredictable if it is not). Even if an approximate range for the solu-
tion has been determined, it is difficult to find stable solutions using
successive approximation methods such as reverse linear interpo-
lation or polynomial approximation. Using one of these approaches
may well provide some solutions, but it is well known that numer-
ical calculations can provide solutions in a random order. When a
solution has been found using, for example, the Newton—Raphson
method, a deflation is set up and the procedure is repeated to deter-
mine the next eigenvalue. Thus, conventional methods have some
fundamental weaknesses for solving these nonlinear equations.

Kashiwagi et al. have conducted a systematic study of compressed
versions of the equations published by Hirai et al. [11-16]. They have
addressed the problem of finding all the eigenvalues in a locally mod-
ified system, proposing combinations of the Durand-Kerner method
[12] with Newton’s method [16] and with rational functions [13] to
find reliable solutions for eigenvalues in low-degree systems. They
have also demonstrated that the Sturm sequence is useful for certain
compressed, strongly nonlinear equations [14,15], discussed how to
identify regions in which Sturm’s eigenvalues exist, and described
solutions using the Sturm sequence bisection method. The Sturm
sequence method is a conventional, commonly used method for cal-
culating eigenvalues; generally, it is most suitable for matrices that
have been transformed into tridiagonal matrices [9]. The process
of converting a matrix to tridiagonal form requires a considerable
amount of calculation and generally represents more than half of the
computation of identifying eigenvalues. The version of the Sturm se-
quence method developed by Kashiwagi et al. requires identifying
all of the eigenvalues and eigenvectors of the unmodified system,
but does not require transforming the matrix into tridiagonal form,
so it represents a unique contribution to this field.

Many eigensolution problems seek just a few of the eigenvalues
and their corresponding vectors from low-degree systems. Inverse
power functions are an example of the iterative methods used to
obtain solutions in such systems [17]. The inverse power method is
a basic method for obtaining solutions in eigenvalue analysis; many
approaches have been based on it. For example, subspace iteration
[18,19] is a very commonly used method for determining eigenval-
ues. Thus, we have a nearly complete toolbox of methods for deter-
mining the eigenvalues of a locally modified system, but currently
no method based on inverse power functions has been proposed.

This paper proposes just such a method based on inverse power
method, using the DOF of only the modified part. This approach en-
ables exact solutions for eigenvalues to be found quickly, regardless
of the magnitude of the modification, using the degree of the con-
densed modified part. When the degree of that matrix is low, the
calculation time is short, especially when the inverse power func-
tion is combined with a shift of the origin. All of the eigenvalues
and eigenvectors of the unmodified system must be known, so for
relatively small systems it is effective to determine just the first sev-
eral eigensolutions (10 or less for practical systems), beginning from
the smallest eigensolution. In the following sections, the theory and
the algorithm of the proposed method are described and the effec-
tiveness of this approach is demonstrated by numerically solving a
typical eigenvalue problem.

2. Theory and algorithm for the inverse power method for
locally modified systems

This section describes the theory of the inverse power method
for locally modified systems and the theory of what is here termed
the shifted inverse power method for locally modified systems. These

theories enable the eigensolution of just the condensed version of
the modified part to be exactly determined.

2.1. Inverse power method for locally modified systems

The general eigenvalue problem is as follows, assuming an n x n
real symmetric matrix A and a positive real symmetric matrix B:

Adi =B (n
where 7; is the ith eigenvalue, beginning with the smallest value and

¢; is the eigenvector corresponding to eigenvalue 7;. A and B take
the following forms:
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If @ is the mode matrix containing the eigenvectors for the problem
expressed in Eq. (1)
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then the following relationships hold:
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Here, I is the n x n identity matrix. From Eq. (5) we obtain
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Free structural vibration and buckling are two eigenvalue problems
that are typically analyzed by the FEM. For the free vibration problem,
A is the stiffness matrix K and B is the mass matrix M. In buckling, A
is the stiffness matrix K and B is the geometric stiffness matrix K.
Under a local modification, A is replaced by A + AA and B is
replaced by B + AB. Let us assume that AA and AB are as follows:
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