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a b s t r a c t

Topology optimization of a compliant mechanism under pressure input is presented by treating void

regions with incompressible hydrostatic fluid. Since an input force is not imposed on one point, existing

problem formulations such as attaching a spring on the node under the input force or constraining the

input displacement are not valid for the present problem. Instead, to obtain the structural stiffness of a

compliant mechanism, the mean compliance by the input pressure is considered. To deal with

incompressibility, as an alternative to the mixed displacement–pressure formulation, displacement-

based nonconforming finite elements are employed for both two- and three-dimensional problems. The

effectiveness of the proposed approach is verified by designing grippers and stretchers.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

A compliant mechanism is a monolithic structure that acquires
its desired motion from the elastic deformation of some or all its
integral parts in contrast to a typical rigid-body type mechanism. It
can be a stand-alone structure or a part of a system where the
movement can be utilized for actuation of other components in the
system. Recently, the widespread application of compliant mechan-
isms can be found in various fields such as micro electro-
mechanical systems (MEMS) and robotics [1]. However, most of
the existing techniques so far deal with single-point input force to
actuate the mechanism. As the areas of application of this
technology continuously expand, especially in MEMS, it is desirable
that this technique be extended to other possible problems such as
those involving pressure as the actuating force.

The design of a compliant mechanism concerns major
consideration of the kinematical functionality or flexibility and
stiffness of the structure for the efficient transfer of input to
output work. In Sigmund [2], displacement constraint at the input
point was added to impose structural stiffness and control the
maximum stress level. In Frecker et al. [3], flexibility and stiffness
of a compliant mechanism were both taken into account in the
multi-criteria topology optimization. This was made possible by
employing the objective function as the ratio between mutual
energy and strain energy of the system. Topology optimization of
a compliant mechanism has also been extended to thermal and
electromechanical applications [4–6].

Topology optimization with a pressure load is a typical design-
dependent load problem wherein the direction and location of the
load vary with the change in shape of the pressurized boundary.
One way to find optimum topology for a continuum structure
under a design-dependent load is by considering the shape of the
loaded boundary and defining the load acting on it [7–9]. Another
approach is to use fictitious thermal loads to simulate the design-
dependent loads instead of defining parameterized loaded
boundaries [10]. In Sigmund and Clausen [11], a technique using
incompressible material had been developed where, to deal with
incompressibility, the displacement–pressure mixed formulation
was employed. In this approach, pressure is imposed on an
external boundary of a design domain and is transferred to its
corresponding boundary in the structure using the incompressi-
bility of the material. In this case, the load is not numerically
design-dependent. Thus, instead of parameterizing pressure-
loaded surfaces, the formulation allows for the transfer of
pressure from an external boundary to the structure by defining
void phase as hydrostatic incompressible fluid.

Obviously, the application of the mixed formulation in [11] is
to overcome the difficulty caused by the incompressible behavior
of a material. An alternative approach without introducing a
pressure as an additional field variable can be formulated with the
use of nonconforming finite elements [12]. The use of noncon-
forming elements for topology optimization can be traced back to
[13,14]. These studies highlighted the ability of nonconforming
finite elements to overcome the common checkerboard problem
and locking phenomenon in contrast to the use of low-order
conforming counterpart. The Poisson locking-free property of
nonconforming elements [15] can deal with problems involving
incompressible material based on the pure-displacement formu-
lation. Using this property, Jang and Kim [16] employed
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nonconforming elements for solving mean compliance minimiza-
tion problems with incompressible material.

The objective of this investigation is to formulate the topology
optimization problem of compliant mechanism with a pressure
input load in the framework of displacement-based nonconform-
ing elements. In the case of a pressure input load, the stiffness of a
compliant mechanism cannot be imposed by attaching an input
spring or constraining the displacement of one prescribed point.
Instead, the input displacement should be constrained in the form
of integration over the pressurized boundary of the compliant
mechanism. Adopting the idea of using hydrostatic fluid for
transmitting pressure to the boundary of a structure [11], the
integration of input displacement can be performed on the
boundary of a nondesign hydrostatic fluid domain regardless of
the varying pressurized boundary of the compliant mechanism.
Because the pressure is constant over the pressurized hydrostatic
fluid region, constraining the integrated value of the input
displacement can be regarded as constraining the mean com-
pliance of the system. Thus the upper bound for the input
displacement constraint can be decided by considering the mean
compliance of the compliant mechanism.

After showing the validity of nonconforming elements for
pressure load problems through several benchmark problems,
pressure-actuated grippers and stretchers are designed by
following the proposed optimization formulation.

2. Analysis of pressure load problems using incompressible
medium

2.1. Material interpolation scheme for solid, incompressible fluid and

void

For the pressure load problem, the solid isotropic material with
penalization (SIMP) approach is modified to facilitate different
material representation; the parameterization between materials
and design variables is expressed in terms of the bulk modulus, K,
and shear modulus, G. For element e,

KðreÞ ¼ Ke ¼ Kfluidþrp
e ðKsolid � KfluidÞ; ð1aÞ

GðreÞ ¼ Ge ¼ Gfluidþrp
e ðGsolid � GfluidÞ; ð1bÞ

with

0rrer1;

where the quantity with subscript fluid and solid refer to material
properties for incompressible fluid and solid, respectively. In Eq.
(1), p (Z3) is the penalty exponent to push the optimization
solution towards a 0–1 design. For plane strain problems, the bulk
modulus of material is evaluated as K ¼ E=2ð1þnÞð1� 2nÞ and, for
three-dimensional problems, K ¼ E=3ð1� 2nÞ. The shear modulus
is G¼ E=2ð1þnÞ regardless of the dimension. Incompressibility is
imposed by setting a large value for Kfluid (10–100 times larger
than Ksolid).

To deal with problems involving three material states (solid,
incompressible fluid, void), one needs to introduce two design
variables r1;e and r2;e at every element such that

Kðr1;e;r2;eÞ ¼ ðKsolid � KvoidÞðr1;eÞ
p
½1� ðr2;eÞ

q
�

þðKfluid � KvoidÞðr2;eÞ
p
½1� ðr1;eÞ

q
�þKvoid; ð2aÞ

Gðr1;e;r2;eÞ ¼ ðGsolid � GvoidÞðr1;eÞ
p
½1� ðr2;eÞ

q
�þGvoid; ð2bÞ

with

0rr1;e;r2;er1;

where Gfluid ¼ Gvoid is used. In Eq. (2), r1;e determines whe-
ther the element is fluid or void if r2;e ¼ 1, and whether it is solid
or void if r2;e ¼ 0. To impose incompressibility, as in the
case of two-material parameterization in Eq. (1), the value of
Kfluid is set large while the value of Gfluid ¼ Gvoid is chosen to be
very small.

2.2. Displacement-based nonconforming elements

In this work, to deal with incompressible material, the analysis
is formulated with the displacement-based nonconforming ele-
ments. The basic properties of nonconforming elements are
briefly given in this subsection (see [12,15] for detailed mathe-
matical descriptions). The convergence of nonconforming ele-
ments is given as

Ju� uhJ1;hrChJuJ2; ð3Þ

where u and uh denote an exact solution and a finite element
solution by nonconforming elements, respectively, and h is a
characteristic element size. Since nonconforming elements have
discontinuity along element edges, element-wise calculation of
the energy norm in Eq. (3) is carried out. Note that C is a constant
with respect to the material property, by which the present
nonconforming elements can be free from Poisson locking for
incompressible material with n� 0:5.

For the convergence in Eq. (3), the displacement continuity of
nonconforming elements is imposed only at the midpoints of the
element edges for two-dimensional problems and at the centroids
of the element faces for three-dimensional problems. Thus the
nodes are not located at the vertices of an element as in
conforming finite elements (see Fig. 1(a) for the location of
nodes of nonconforming elements).

Fig. 1. (a) Two- and three-dimensional nonconforming elements and (b) two-

dimensional shape functions associated with node i.
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