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a b s t r a c t

This paper focuses on the identification of constitutive parameters in the couple stress problem. The

direct problem is modeled by element-free Galerkin method (EFGM), thus the inconvenience that may

be caused by C1 continuity requirement in the implementation of FEM can be avoided, and the

sensitivity analysis that is required for the solution process of the inverse problem can be carried out

conveniently. The inverse problem is solved via the Gauss–Newton technique. The proposed method is

verified in the cases of slight and strong regional inhomogeneity. The effects of initial guesses, noisy

data and location of the measured points on the solutions are investigated, and satisfactory results are

achieved.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The existence of couple stress was originally postulated by
Voigt in 1887. In 1909, the brothers E. and F. Cosserat first set up a
framework of couple stress theory which has been further
developed since then [1–4]. Couple stress theory is an extended
continuum theory that includes the effects of a couple per unit
area on a material volume [5]. Accordingly, a group of variables
including moments, curvatures, and characteristic length are
introduced within a continuum framework [3].

One important application of couple stress theory was to
describe the materials with microstructures, such as the materials
with granular [6], fibrous [7] and lattice structures [8]. In the
addition, in the some cases where the size effects have to be taken
into account [9], the theory was employed to explain the variation
of hardening behavior [10], and local singularities [11].

The study of this paper is motivated by a question that if a
continuum couple stress model is adopted, how to determine
relevant constitutive parameters, including the so-called char-
acteristic length ‘?

One of the solutions is to treat this issue as an inverse problem
with unknown constitutive parameters. This inverse problem can
be investigated under the framework of inverse problems in
elasticity for which a comprehensive review was given by Bonnet
[12]. If the sufficient ‘measurement’ message, such as the
displacements, strains etc. is provided, all the unknowns are able
to be determined analytically or numerically. In comparison with

the previous work based on the classical elasticity, the parameters
identification of the inverse couple stress problem includes both
constitutive parameters appearing in the classical model and
those additional items describing the constitutive relationship of
couple stress. To the best of the authors’ knowledge, it seems
there are no reports directly relevant to this matter.

Since the displacement that is usually reliable and is easy to
measure [13], it is employed as ‘measurement’ message in this
paper. We propose a numerical model that consists of two parts,
one is concerned with the direct problem formulated by element-
free Galerkin method [14], and the implementation of sensitivity
analysis; the another is for the description of inverses problem
that is treated as an optimization problem solved by the Gauss–
Newton technique, the major issues concerned in this part include
the combined identification, regional inhomogeneity, and com-
puting accuracy with the consideration of noisy ‘measurement’
message and location of measured points.

2. Governing equations for direct couple stress problems

For plane couple stress problems in the absence of body forces
and couples, the equilibrium equations are given by [15]

1

2
ðsijþsjiÞ;jþ

1

2
ðsij � sjiÞ;j ¼ 0

mi;iþaij3sij ¼ 0
in O ð1Þ

where sij stands for the Cauchy component of the stress tensor, mi

denotes the component of moments, aij3 is the permutation
symbol, subscript i and j range form 1 to 2.
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The relationship of displacement and strain is described
by [15]

feg ¼ ½L�fug ð2Þ

where fug ¼ fu1;u2g
T represents the vector of displacement,

feg ¼ fe11; e22; e12;k1;k2g
T represents strain vector, ki designates

curvature corresponding to mi and is specified by

ki ¼ y;i; i¼ 1;2: ð3Þ

where y is a microrotation defined by

y¼
1

2
aij3uj;i ð4Þ
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The boundary conditions are specified by [15]

ui ¼ ~ui

y¼ ey xAGu ð6Þ

sijnj ¼ T0
i

mjnj ¼ q0
i

xAGs

(
ð7Þ

where f ~ug and ey are the prescribed values of fug and y on Gu, T0
i

and q0
i are the prescribed vectors of traction and moment on Gs, nj

denotes the unit outside normal on the boundary, GuþGs ¼G
designates the whole boundary of O, x represents a vector of
coordinates. Subscripts u and s refer to displacement and stress,
respectively.

The constitutive relationship is described by

½D� ¼
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for the plane stress problem ½15�

ð8Þ

where b¼ ‘2G¼ ‘2ðE=2ð1þnÞÞ is called the curvature modulus, E, n
and ‘ are Young’s modulus, Poisson’s ratio and character length,
respectively.

[D] can be decomposed into

½D� ¼ b1½H1�þb1½H2�þb3½H3� ð9Þ

Fig. 1. A circular hole in a uniform tension field.

Fig. 2. Nodal arrangement (99 nodes).

Fig. 3. The comparison of sy=sn at y=901.

Table 1

The comparison of sy/sn at y=901.

sy/sn at y=901

r/a ‘¼ 0:5 ‘¼ 0:05

Exact EFG % error Exact EFG % error

1.00 2.0666 2.0778 0.54 2.9130 2.8209 3.16

1.10 1.9129 1.9553 2.22 2.4220 2.4552 1.37

1.20 1.7853 1.8437 3.27 2.0737 2.1372 3.06

1.30 1.6796 1.7434 3.80 1.8279 1.8696 2.28

1.40 1.5916 1.6545 3.95 1.6522 1.6535 0.078

1.50 1.5181 1.5769 3.87 1.5241 1.4876 2.39

1.60 1.4562 1.5101 3.70 1.4287 1.3683 4.23

1.70 1.4038 1.4533 3.53 1.3563 1.2899 4.89

1.80 1.3591 1.4055 3.42 1.3001 1.2452 4.22

1.90 1.3207 1.3654 3.39 1.2559 1.2256 2.41

2.00 1.2876 1.3318 3.43 1.2206 1.2226 0.16
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