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The paper presents an Arlequin based multi-scale method for studying problems related to the mechani-
cal behaviour of sandwich composite structures. Towards this end, different models are mixed and glued
to each other. Several coupling operators are tested in order to assess the usefulness of the proposed
approach. A new coupling operator is proposed and tested on the different glued Arlequin zones. A
free–clamped sandwich beam with soft core undergoing a concentrated effort on the free edge is used as
a typical example (benchmark) in the validation procedure. Numerical simulations were conducted as the
preliminary evaluation of the various coupling operators and the discrepancies between local and global
models in the gluing zone have been addressed with sufficient care.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The use of sandwich structures continues to increase rapidly for
applications ranging from satellites, aircraft, ships, automobiles, rail
cars, wind energy systems and bridge construction to mention only
a few. One challenge in these applications is to understand in detail
how different damages influence the structure and what their be-
haviour in-service is. In this situation, an accurate solution is often
required and calculations must be performed on a finely discretized
model of the structure (in the micro-level).

Despite advances in computational techniques and computing
power, direct simulation of these materials is still not a viable op-
tion. Thus, there is a need for accurate and computationally efficient
techniques that take into account the most important scales involved
in the goal of the simulation while permitting the analyst to choose
the level of accuracy and detail of description desired.

Generally, finite elements (FEs) modelling of structures is very te-
dious when the finer details need to be captured or when non-linear
calculations are carried out. To overcome these difficulties and make
the FE methods more flexible, important innovative and efficient nu-
merical methods have been developed. Let us mention in particular
the sequential adaptation method, the multigrid (MG) method, the
partition of unity finite element method (PUFEM) and the extended

∗ Corresponding author. Tel.: +352545580530; fax: +352425991333.
E-mail address: salim.belouettar@tudor.lu (S. Belouettar).

0168-874X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.finel.2008.07.003

finite element method (XFEM). The sequential adaptation method
consists of carrying out structure modelling sequence by sequence.
At the end of each sequence, an error is estimated and the discretiza-
tion (size of mesh and/or degrees of freedom of the shape function)
is refined as long as the estimated error is higher than the prescribed
value. In this category, one could mention the h-adaptation, the
p-adaptation and the hp-adaptation which is a combination of these
two methods.

The MG method is a family of techniques for solving differential
equations using a hierarchy of discretizations. The idea behind is
similar to extrapolation between coarser and finer grids and can
treat arbitrary regions and boundary conditions. MG can be applied
in combination with any of the common discretization techniques.

Since the introduction of singular enrichment method [1] us-
ing a cut-off function for a mesh dependent on the domain geome-
try, different approaches had been analysed such as PUFEM [2] and
GFEM (generalized finite element method) [3]. Inspired by PUFEM,
the XFEM was introduced by Moës et al. [4]. The idea of XFEM con-
sists of enriching the basis of the classical FE method to take into
consideration the discontinuity of the displacement field.

All these approaches are essentially monomodel and may either
lack flexibility or relevance to address the above issues. Recent hier-
archical global–local strategies of global–local techniques that allow
the superposition of different mechanical models are the s-version
method by Fish [5–7] and the Arlequin method by Ben Dhia et al.
[8–12]. The s-version method is a multilevel solution scheme where
each level is discretized using an FE mesh of arbitrary element size
and polynomial order. It superimposes additional local and refined
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meshes to an existing global one, thus allowing differentmodelling in
the superimposed meshes. Like the s-method, the Arlequin method
[10,12] aims at creating a multi-model framework. The models are
crossed and glued to each others. In addition, the fact that models are
locally crossed with each other theoretically allows the coexistence
of substantially different mechanical and numerical models. Iteration
of the crossing process [9] (by taking care of multiple gluing zones)
can potentially lead to some relevant multiscale models. We refer
to [7,13] for a comprehensive review of global–local techniques for
composite laminates and to [14,15] for various aspects of reliability,
convergence and accuracy of global–local techniques.

In this manuscript, an attempt is made to apply the Arlequin
method for the modelling of sandwich structures and particularly
to capture local effects in these structures. Different FE models have
been glued to others in order to see the relevance and the capabili-
ties of the approach. These are illustrated through typical dedicated
applications like

1. Locally refined models (zoom): the 2D coarse FE model coupled
to a 2D refined FE model.

2. Link structure models (sub-structuring): the 2D FE models cou-
pled to a 1D (zig-zag or beam) model and 2D FE model coupled
to an analytical model.

2. Arlequin method: formulation and implementation issues

Following the Arlequin framework [9], the domain� representing
themechanical system is partitioned into two overlapping sub-zones
�1 and �2 (Fig. 1). The resulting intersecting zone constitutes the
gluing zone S. The internal and external virtual works are expressed
as

�Pinti (ui) = −
∫
�i

�i��(ui)�(ui), (1)

�Pexti (ui) =
∫
�i

�i�uifi, (2)

where ui, �ui and fi are, respectively, the displacement, the virtual
displacement and the external force in�i. To avoid considering twice
the energy of the total system in the covering zone, the virtual work,
associated to each zone, is balanced by some weighting or blending
functions. The latter form a partition of unity on the whole domain.
These functions are represented by �i for the internal work and by �i
for the external work. �i and �i are assumed to be positive piecewise
continuous functions in �i and satisfy the following equalities:{
�1 = �2 = �1 = �2 = 1 in �1\S, �2\S,
�1 + �2 = �1 + �2 = 1 in �1 ∩ �2.

(3)

It is clear that the Arlequin solution depends on the choice of �i and
�i. The operational choice [9] of these functions consists of relating
their values to the relative local refinement of the associated models.
The natural way to treat the gluing volume of displacement fields
consists of introducing the Lagrange multiplier field belonging to
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Fig. 1. The Arlequin method in a general mechanical problem.

the dual of the space of the admissible displacement fields restricted
to S (see [9]).

The virtual work equation takes the following form:

�Pinti (ui) + �Pcoupi (ui) + �Pexti (ui) = �Pacci (ui), ∀�ui ∈ K.A. (4)

where K.A. in Eq. (5) holds for kinematically admissible, �Pacci and

�Pcoupi are, respectively, the inertial terms and the virtual coupling

work. �Pcoupi is described by the following form:

�Pcoupi (ui) = (−1)iCi(�,�ui). (5)

Ci denotes the coupling operator which is a function of � and �ui.
The expression (−1)i is introduced to give C1 and C2 opposite signs.

Note that if (u1,u2 and �) denote the solution of a given structural
problem, the coupling virtual work should be the same for any given
set of Langrange multiplier �:

C1(��,u1) − C2(��,u2) = 0. (6)

The FE approximations are used to solve Eqs. (4) and (6). Thus, the
displacements ui and the Lagrange multipliers � are discretized as
follows:{
ui = 〈Ni〉{uei },
� = 〈Nc〉{�e},

(7)

where uei and �e denote, respectively, the elementary displacement
vector and the elementary Lagrange multiplier field. Ni and Nc are,
respectively, the shape functions associated to displacement and to
the Lagrange multiplier fields. Finally, the discrete formulation of the
analysed problem is derived and expressed as⎡
⎣K1 0 tC1

0 K2 −tC2
C1 −C2 0

⎤
⎦

⎡
⎣U1
U2
	

⎤
⎦ =

⎡
⎣F1
F2
0

⎤
⎦ , (8)

where

(Ki)jk =
∫
�i

�i�(N
j
i) : �(Nk

i ), (9)

(Fi)j =
∫
�i

�if (N
j
i). (10)

It is clear that the construction of the coupling matrix is central in
the application of the Arlequin method and essentially, when differ-
ent models are mixed together like when a 3Dmodel is coupled with
a 2D one or when a 2D model is coupled with a 1D model. In the
present study, the Lagrange multiplier field is always established on
the coarse mesh (see [9]). Bearing this in mind, three coupling oper-
ators are considered for the present study and thereafter evaluated:

• H1 coupling

Ci =
∫
S
� · ui + �

2�(�) : �(ui). (11)

• L2 coupling

Ci =
∫
S
� · ui. (12)

• L2p coupling

Ci = Ep

∫
S
� · ui. (13)

� is a strictly positive parameter homogeneous to a length and Ep is
a kind of a weight parameter which depends on the Young modulus
in the coupling zone.
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