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The way the non-linear constitutive equations in the spatial beam formulations are solved, influences
the rate of convergence and the computational cost. Three different approaches are studied: (i) the direct
global approach, where the constitutive equations are taken to be the iterative part of the global gov-
erning equations, (ii) the local (or indirect global) approach, where the constitutive equations are solved
separately in each step of the global iteration, and (iii) the partly reduced approach, which is the com-
bination of (i) and (ii). The approaches are compared with regard to the number of global iterations and
the total number of floating point operations. The direct global approach is found to be the best choice.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In the analysis of structures the non-linearity of the material law
often dictates the rate of convergence of the solution procedure. The
objective of the present paper is to find out how various approaches
for solving the non-linear constitutive equations effect the rate of
convergence and the total number of floating point operations in
the finite-element analysis of spatial beams and frames. Several
approaches for the solution of the discretized equations of the non-
linear spatial beams are at hand. The constitutive equations, for
example, can be eliminated from the set of the governing equations
prior to its solution. This reduces the size of the global system of
linearized equations that need to be solved in each iteration. When
material is non-linear, such a formulation requires solving, in each
step of the global iteration and locally in each integration point, the
non-linear constitutive equations. This implies that, in each step of
the global iteration, an additional number of local iterations need to
be executed. This may remarkably increase the computational time.
If, in contrast, the constitutive equations in integration points are
assumed to be the part of the global governing equations, the size
of the overall system of equations is larger. Such an approach may
somewhat increase the number of global iterations, but because
no additional local iterations are needed, the overall computational
cost will probably be lower. Another interesting approach is a mixed
approach, where some constitutive equations are solved locally,
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while the remaining equations become a part of global governing
equations.

The influence of three different approaches on the rate of con-
vergence and the overall computational cost is examined through
numerical examples. We compare not only the number of iterations,
but also the total number of floating point operations, thus assess-
ing also the actual computational cost of the algorithm apart from
the actual computer used.

2. Governing equations of the beam

The complete set of the beam equations consists of the cross-
sectional constitutive equations (1) and (2), the equilibrium equa-
tions (3) and (4), the kinematic equations (5) and (6) (see [1–3])

R(x)CN(cG(x),jG(x)) − Ng(x) = 0 (1)

R(x)CM(cG(x),jG(x)) − Mg(x) = 0 (2)

N′
g(x) + ng(x) = 0 (3)

M′
g(x) + mg(x) − Ng(x) × R(x)(cG(x) − cG(x)) = 0 (4)

r′
g(x) − R(x)(cG(x) − cG(x)) = 0 (5)

�
′
g(x) − T−T(x)(jG(x) − dG(x)) = 0 (6)

and the related static boundary conditions:

S0 + Ng(0) = 0

P0 + Mg(0) = 0
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Fig. 1. Model of the 3D beam.

SL − Ng(L) = 0

PL − Mg(L) = 0

Here, the prime (′) denotes the derivative with respect to the arc-
length parameter of the line of centroids in the initial configura-
tion, x, and “×” marks the cross-vector product. The meaning of the
notations used in the above equations is described below (see also
Fig.1):

g fixed (inertial) orthonormal basis {�g 1,
�
g 2,

�
g 3} spanning

the physical space of the beam;

G orthonormal basis {�G 1,
�
G 2,

�
G 3} spanning the cross-

sectional planes;
N, M stress-resultant force and moment vectors over the cross-

section;
CN , CM operators describing material of the beam;

c translational strain vector (�G1 is the extensional strain, �G2,
�G3 are shear strains);
j rotational strain vector (�G1 is the torsional strain, �G2, �G3

are the curvatures);
r position vector of the line of centroids of the beam;
R both the rotation matrix from g to G and the coordinate

transformation matrix (vg = RvG);
� rotational vector whose axis coincides with the axis of ro-

tation and whose length equals the angle of rotation;
H skew-symmetric matrix H composed from its axial vector

�g = [�g1 �g2 �g3]
T;

TT transformation matrix between jG and �
′
g (i.e., TT = I −

((1 − cos�)/�2)H+ ((� − sin�)/�3)H2, � = ‖�g‖);
c, d variational constants determined from the known strains,

position vectors and rotations in the initial configura-
tion;

n, m external distributed force and moment vectors per unit of
the undeformed length of the axis;

S0, SL external point forces at the boundaries x = 0, x = L;
P0, PL external point moments at the boundaries x = 0, x = L.

3. Reinforced concrete 3D beams

Due to its widespread use in practice the reinforced concrete ma-
terial is found convenient for demonstrating the convergence prop-
erties of various approaches. Let us describe the mathematical model
of reinforced concrete first.

3.1. Constitutive law of concrete

We follow Desayi and Krishnan [4] and Bergan and Holand [5]
and employ the uniaxial stress–strain relation for concrete given by

Fig. 2. Constitutive law of concrete.

the function (see Fig. 2 for its graph):

�(�) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, ���u
2fm|�1| �

�21 + �2
, �u < ���r

�r
�r − �m

(� − �m), �r < ���m

0, �m < �

(7)

Here fm is ultimate strength of concrete in compression (fm >0);
�1 <0 is the corresponding strain; �u <0 is ultimate strain in com-
pression; �r >0 is strain at ultimate strength of concrete in tension
and �m >0 is ultimate strain in tension. Parameters fm, �1, and �u
have to be determined in compression tests on concrete cylinders;
similarly �r and �m have to be determined by tension tests. Because
the tension zone is not essential in modelling concrete, the tension
tests are rarely performed in practice and empirically found average
values �r = 5.5 × 10−5 and �m = 7 × 10−4 are utilized instead [5].

Note that the function proposed in Eq. (7) is discontinuous at �u
and that its first derivative with respect to � is discontinuous at �u, �r
and �m. This property is very inconvenient, because the formation of
the tangent stiffness matrix of the beam element is then faced with
the integration of a discontinuous function over the cross-section,
which requires special measures to be applied.

In spatial beam elements, when used in frame-like structures, we
usually assume the Bernoulli hypothesis that a cross-section suffers
only rigid translation and rotation during deformation. This implies
that the normal strain (axial strain), �, at the cross-section (x=const.)
is linearly distributed over the cross-section:

�(y, z) = �G1 − y�G3 + z�G2 (8)

Here, y and z are the local coordinates at the cross-section defined by

base vectors
�
G 2 and

�
G 3 (see also Fig. 1). The corresponding normal

(axial) stress distribution, �(y, z), over the concrete cross-section x=
const. is determined from the constitutive law (7). The integration of
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