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a b s t r a c t

A finite element spot weld is proposed. The model is only weakly sensitive to element size, in contrast to
some existing models, for which predictions of the static and dynamic responses can be strongly
sensitive to the size of the elements in the substructures to which the spot weld is connected, to such an
extent that numerical results may not converge. The proposed model comprises a number of multipoint
constraint connections to the attached substructures, so that they may have incompatible meshes.
It involves stiffness elements distributed around the perimeter of the spot weld. The case of two plates
connected by three spot welds is considered. Numerical results are presented and compared with those
of CWELD models and with experimental measurements. The results from the proposed spot weld
model show good accuracy, low sensitivity to the element dimensions and good convergence properties.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The spot weld is one of the most important structural joints in
the automotive industry; a vehicle body typically contains thou-
sands of spot-welds. The finite element (FE) method can be used to
analyze spot welded structures and several models have been
proposed in the literature. However, there are still issues in the
application of these models.

The detailed representation of the spot weld using solid
elements has often been used as a benchmark in static analysis
[1–3]. In this way, a smooth and reliable stress field is predicted.
However the model may poorly estimate the interaction forces
between the spot weld and the structure. Therefore, when they are
used in dynamic analyses, these elements can result in differences
between experimental results, for example when using brick
element representations of different dimensions which produce
non-physical sensitivities in the dynamic characteristics such as
the natural frequencies [4–5]. Furthermore, such a model of a
single spot weld involves many degrees of freedom (DOFs), so that
to model each of the spot welds in detail in a large structure leads
to a major increase in model size.

On the other hand, in simplified approaches the spot weld is
modeled using an elastic component that is attached to the
substructure DOFs in general in one of two ways: (1) by directly
connecting the joint nodes to nodes in the substructures

(node-to-node connection) and (2) using interpolation elements
or multipoint constraints (MPCs) to connect the joint nodes to the
substructures. Here, the parameters of the connecting element
represent the stiffness characteristics of the joint and therefore
their influence on the rest of the structure.

The node-to-node connection requires coincident meshes; if
the location of the joint changes, then the mesh of both surfaces
needs to be modified. Moreover, the stiffness is generally under-
estimated [5–6] leading to inaccurate results. In contrast, when
interpolation elements or MPCs are used to connect the elastic
component to the substructures (solid, beam or springs) [7–8], the
connection can be placed at any location using the existing surface
meshes. This latter feature offers a great advantage, since it is then
possible to assemble components with different mesh character-
istics or to assemble components with complex geometries, for
which it is very difficult to have coincident nodes.

Unfortunately, when these elements are used, it has been
shown that they have a high sensitivity to the element size
[9–10]. Moreover, Palmonella et al. [9] identified the element area
as a parameter that can be updated in order to reduce the error in
the prediction of dynamic properties in a FE model when com-
pared to experimental measurements. It has also been found that
for dynamic predictions, some of the lowest natural frequencies do
not converge even if the element size is much smaller than the
wavelength [6,11].

In this paper the cause of the large sensitivity to element size is
discussed and an alternative spot weld model is proposed. The
sensitivity, which often leads to poor convergence or, indeed,
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failure to converge at all, is a result of singularities (particularly
associated with the rotational DOFs) that occur when point
loading is applied, as opposed to loading distributed over an area.
Point loading implies infinite stresses at that point and possibly
infinite response, even in continuous models of the system. The FE
model proposed overcomes this issue by modeling the spot weld
as an array of springs. It provides a good physical representation of
the spot weld and the forces at the connections are distributed
over an area, imposing a surface to surface link between the
connected substructures. The model is robust to changes in the
mesh size and coincident meshes are not required.

In the following section the sensitivity of spot weld models to
element size is discussed and demonstrated by application to an
example of two simply supported plates with a single connection.
In Section 3 a spot weld model robust to element size is proposed.
In Section 4 the application of the new spot weld model is
demonstrated in a model of two simply supported plates with
three point connections. The numerical results from the proposed
spot weld model can then be compared to the numerical evalua-
tion of a coupled analytical benchmark model of two simply
supported plates connected by point springs formulated using an
assumed modes and mobility approach. In order to evaluate the
performance of the proposed element, mesh sensitivity and
convergence are evaluated. The resulting natural frequencies are
compared to experimental measurements. Finally, conclusions are
given in Section 5.

2. Sensitivity to element size

2.1. Plate stiffness matrix formulation

In this section the dependence of the diagonal terms in the
stiffness matrix of a Heterosis plate element on element size is
discussed. When the out-of-plane behavior is studied, it is seen
that the terms associated with the rotational DOFs are highly
sensitive to the element size.

When two plates are connected using a conventional spot weld
model, constant stiffness values are added to the diagonal terms of the
DOFs, both translational and rotational, involved in the connection.
The magnitudes of the stiffnesses associated with rotational plate
DOFs depend on the element size, while the added rotational stiffness
due to the spot weld does not, resulting in natural frequencies and/or
dynamic or static solutions that are sensitive to element size. This is a
problem that results from the stress singularities that arise from truly
point loading, as opposed to loading that is distributed over a finite
area. Point loading implies infinite stresses at the point of application
of the load and infinite stress gradients. Note that these singularities

may be weak in the sense that the response – displacements and
rotations – need not be infinite. For example, consider an infinite thin
Kirchhoff plate excited by a time harmonic point force. The shear
stress at a distance ε from the excitation point is proportional to ε�1,
while the response is bounded, the input mobility (velocity per unit
force) being 1=8

ffiffiffiffiffiffiffi
Ds

p
([12], p. 255), where D and s are the bending

stiffness and mass per unit area respectively. For moment excitation,
on the other hand, the rotational input mobility (rotational velocity per
unit moment) is ωð1� iΓÞ=16D, where Γ depends on the nature of
the moment. For two point forces separated by a distance 2a, with
a-0, then Γ ¼ 4 lnðγka=2Þ=π; γ ¼ 1:781… and thus involves a
logarithmic singularity ([12], p. 275). The same issues arise in discrete,
FE models of systems, which furthermore suffer from the difficulty in
approximating the stress field around the excitation point using
(typically) polynomial approximations.

To illustrate the sensitivity to element size, consider the
Heterosis plate element [13]. This is a plate element derived from
the Mindlin–Reissner plate theory, used to describe the behavior
of thick plates. However, as reduced order integration is used to
evaluate the shear stiffness matrix, this element does not suffer
from shear locking, possesses correct rank and can be applied to
both thick and thin plates.

This element has 9 nodes: 4 corner, 4 mid-side and one central
node (see Fig. 1). The central node has two rotational DOFs and
each other node has 5 DOFs which describe in-plane and out-of-
plane motion. Drilling DOFs (i.e. rotation about plate normal axis)
are not included. There are 42 DOFs in total.

The displacement field within the element is interpolated using
serendipity basis functions, whilst the rotations in the x and y
directions are interpolated using Lagrange basis functions. The
out-of-plane co-ordinates ðw;θx;θyÞ of a point within the element
are given by

wðx; yÞ ¼ ∑
8

i ¼ 1
Niðx; yÞwi; θxðx; yÞ ¼ ∑

9

i ¼ 1
Piðx; yÞθx;i;

θyðx; yÞ ¼ ∑
9

i ¼ 1
Piðx; yÞθy;i ð1Þ

where the subscript i indicates the node number and Pi and Ni are
Lagrange and serendipity basis functions. These basis functions are
described in terms of the normalized co-ordinates

ξ¼ 2x�sx
sx

and η¼ 2y�sy
sy

ð2Þ

where sx and sy are the lengths of the sides of the element in the x
and y directions respectively. Eq. (1) can be written in matrix

Fig. 1. A single Heterosis finite element.
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