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a b s t r a c t

The objectives of this paper are to examine the use of volumetric strain rate and pressure enhancement
strategies for low order finite elements, and to present a stable matrix-free algorithm for solving steady-
state flow problems. Algorithms based on the method of successive approximation and low order finite
elements are examined for determining the steady-state flow field of a boundary-valued problem
consisting of an incompressible material. It is shown that both volumetric strain rate and pressure
enhancement are required to mitigate pathological locking and nonphysical pressure variations. Care
must however be taken when introducing pressure enhancement, which helps mitigate the pressure
from drifting, as the stress field is perturbed from equilibrium. An algorithm based on dynamic relaxa-
tion and radial return stress calculations is presented for matrix free calculations dealing with stress-
dependent creep.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

There are many problems in geotechnics, including glacier flow,
landslides and debris flows, that involve slope creep, cf. [1].
Analysis of ice mechanics problems is of interest to mining
companies because considerable economic resources in terms of
mineral deposits are at the margins or under ice sheets. Estimates
of ice flow towards a pit are required to assess operational efforts
and mine economics [2]. Colbeck [3] in 1973, for example, carried
out a flow analysis of ice into a proposed open-pit, iron ore mine at
the edge of the Greenland ice sheet. The objective of the study was
to establish the most favorable profile for the ice sheet next to the
mine to minimize the annual amount of ice that would have to
be removed. Owing to global warming and its effect on climate
change and the retreat of ice, interest in resource and economic
development near or at the fringes of ice sheets has increased.

The flow of ice is often treated as a viscous, nonlinear,
incompressible fluid that obeys Stoke's flow equation [4–6]. Such
problems can be challenging from a numerical point of view,
particularly when using low order finite elements, which are
attractive when dealing with a large number of unknowns
together with iterative solvers. The objectives of this paper are
to examine the use of volumetric strain rate ð _εvÞ and pressure (p)
enhancement strategies for low order finite elements, and to
present a stable, matrix-free algorithm for solving steady-state

flow problems based on combining the method of successive
approximation with dynamic relaxation.

We begin by defining the class of the problem that is of interest
and briefly discuss the solution of Stoke's flow equation. Thereafter
the proposed procedure is presented, including enhancement
techniques that are required to suppress pathological locking
and nonphysical pressure variations that are common when using
low-order elements. An example is presented to highlight some of
the issues and to show that care must be taken when implement-
ing enhancement techniques. The literature in this area is vast,
thus only that most relevant is cited.

2. Problem definition and field equations

We are interested in solving for the steady-state, two-dimensional
flow conditions in a large ice mass as represented by the schematic of
Fig. 1. To determine the stress and velocity fields, it is necessary to
consider the relation between strain rate and velocity, the relation
between stress and strain rate, the momentum balance and mass
balance, as well the boundary conditions. It will be assumed that the
ice is incompressible and that the ‘elastic’ strains are negligible for
steady-state creep when compared to the creep strains, which is why
ice can be treated as a very viscous fluid.

Kinematics: The velocity v¼ _u of the ice at a location is defined
by position vector x¼ xi e

!
i where xi are the coordinates and e!i

represent the orthogonal basis vectors in three-dimensional space.
Repeated indices imply summation. The superposed dot indicates
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a derivative with respect to time t, in this case the derivative of
displacement u.

Stress: Adopting Voigt notation for second order tensors with
bold symbols denoting vectors or matrices, stress r¼ 〈s11 s22 s33

s12 s23 s31〉
T can be decomposed into its pressure p and deviatoric

S components according to

r¼ �pmþS ð1Þ
in which m¼ 〈1 1 1 0 0 0〉T . Tensile stresses are taken as positive,
with positive pressure implying compression.

Strain and strain rate: Given that we are interested in steady-
state solutions, no distinction is made here between strain rate _ε
and rate of deformation, although strictly speaking the two are not
the same; see, e.g., [7]. Engineering strain ε¼ 〈ε11 ε22 ε33 γ12 γ23
γ31〉

T is determined from the displacement gradients via ε¼ Lu
with the strain rate given by _ε ¼ Lv in which the linear operator L
is defined according to

LT ¼
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with the superscript T implying transposition. For two-dimensional
flow problems, the out-of-plane strain rate components are zero
and are therefore not required.

With regard to discrete motion, the displacement at time tn is
given by un with the change in displacement defined as Δu¼
Δtvnþ1 such that unþ1 ¼ unþΔu at tnþ1 in which the superscript
n is a step counter and symbol Δ denotes increment.

Constitutive relation: Restricting ourselves to incompressible,
two-dimensional flow with pressure insensitive, isotropic material
behaviour, the relation between deviatoric stress and strain rate
takes the form

S ¼Dd½ _ε�1
3mmT _ε� ð3Þ

with

Dd ¼ μ
2 0 0
0 2 0
0 0 1

2
64

3
75 ð4Þ

in which μ is the viscosity and S¼ 〈S11 S22 S12〉T . The out-of-
plane deviatoric stress is given by S33 ¼ �ðS11þS22Þ-0 for two-
dimensional flow. For incompressible problems the volumetric

strain rate mT _ε vanishes; thus the deviatoric strain rate is the
same as the total strain rate. For nonlinear flow it is convenient to
use Glen's [8] power law _εe ¼ Asr

e to define the viscosity as

μ¼ 1
3
se

_ε e
-μ¼ 1

3A
s1� r
e ð5Þ

where se ¼
ffiffiffiffiffiffiffiffiffiffi
3
2S

TS
q

and _εe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_εT
d _εd

q
are Dorn's definitions for the

equivalent stress and equivalent strain rate, respectively, with the
subscript d implying deviator strain, and r and A being material
properties that depend on temperature, cf. [9,10].

Conservation equations: Keeping in mind that we are treating
the solid as a very viscous fluid, let us begin by writing the
momentum balance:

ρ _v ¼ LTrþb-0 ð6Þ

where r is the Cauchy stress tensor, ρ is the mass density, and g is the
gravitational acceleration vector. All variables are a function of position
x and time t. Eq. (6) is assumed to correspond to a spatial description.
Although the acceleration term has been maintained, it vanishes for
very slow creep rates. Since we are dealing with creeping flow, there is
no need to include the advection term for acceleration.

The second balance equation is a statement of mass balance:

_p ¼ �KmT _ε-0 ð7Þ

in which K is a ’bulk modulus’ that is often expressed in terms of
the material's wave speed cp, i.e., K ¼ ρc2p . Changes in pressure are
naturally related to changes in volumetric strain. For quasi-static
equilibrium conditions the pressure rate also vanishes. Both _p and _v
have been retained in the relations as they are required in the
transient relaxation schemes. To develop a unique solution for a
particular boundary-valued problem, we require boundary conditions.
For a free surface the tractions are zero, nTr¼ 0, as are the velocities,
v¼ 0, if the boundary is fully fixed. The matrix n contains the normal
to a surface. At a divide we have mixed conditions where both shear
traction and normal velocity are zero along the boundary.

Owing to the similarity between the equations for a very
viscous fluid and those of a creeping solid, both balance equations
also apply for creeping solids that undergo small changes in
geometry; in the latter case it is understood that the derivatives
are with respect to the initial configuration, and Eq. (7) appears as
part of the constitutive equation.

3. Solution schemes

The principle of virtual velocities [7] together with a constraint
equation may be used to convert Eq. (6) and (7) to integral forms
that are suitable to develop the finite element matrices, see, e.g.,
[11]. Given volume V, we haveZ
V
δvTρ _v dV ¼

Z
V
δ _εTr dVþ

Z
V
δvTb dVþ

Z
St
δvT t dS ð8Þ

andZ
V
δp _p dV ¼ �

Z
V
δpmT _ε dV ð9Þ

where t is the prescribed traction on boundary St, and the symbol
δ represents a virtual quantity. These equations can be shown to
correspond to a variational principle for incompressible creeping
flow [12]. It is important to recognize that the specification of
pressure on a boundary enters through the traction term and
cannot be specified as an essential (fixed) condition.

Fig. 1. Definition of problem.
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