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In this paper, a new fractal finite element based method for continuum-based shape sensitivity analysis
for a crack in a homogeneous, isotropic, and two-dimensional linear-elastic body subject to mixed-mode
(modes I and II) loading conditions, is presented. The method is based on the material derivative concept
of continuum mechanics, and direct differentiation. Parametric study is carried out to examine the effects
of the similarity ratio, the number of transformation terms, and the integration order on the quality of the
numerical solutions. Three numerical examples which include both mode-I and mixed-mode problems,
are presented to calculate the first-order derivative of the J-integral or stress-intensity factors. The results
show that first-order sensitivities of J-integral or stress-intensity factors obtained using the proposed
method are in excellent agreement with the reference solutions obtained using the finite-difference
method for the structural and crack geometries considered in this study.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Recently, methods based on fractal geometry concepts to gener-
ate infinite number of finite elements around the crack tip to cap-
ture the crack tip singularity have been developed or investigated to
solve linear-elastic fracture mechanics (LEFM) problems [1–5]. Frac-
tal finite element method (FFEM) is one such method developed for
calculating the stress-intensity factors (SIFs) in linear-elastic crack
problems. In its original form, the fractal two-level finite element
method (FEM) was first proposed by Leung and Su in 1993 [6], which
has been successfully applied since its origin, to solve many kinds of
crack problems under mode-I and mixed-mode loading conditions
[7–14].

Compared with other numerical methods like finite element
method (FEM), FFEM has several advantages. First, by using the
concept of fractal geometry, infinite finite elements are generated
virtually around the crack tip, and hence the effort for data prepara-
tion can be minimized. Second, based on the eigenfunction expan-
sion of the displacement fields [15,16], the infinite finite elements
that generate virtually by fractal geometry around the crack tip
are transformed in an expeditious manner. This results in reducing
the computational time and the memory requirement for fracture
analysis of cracked structures. Third, no special finite elements and
post-processing are needed to determine the SIFs. Finally, as the
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analytical solution is embodied in the transformation, the accuracy
of the predicted SIFs is high.

In addition to the SIFs, the derivatives of the SIFs are often
required to predict the probability of fracture initiation and/or in-
stability in cracked structures. Hence, sensitivity analysis of a crack-
driving force plays an important role in many fracture-mechanics
applications involving the stability and arrest of crack propagation,
reliability analysis, parameter identification, or other considerations.
For example, the first- and second-order reliability methods [17],
frequently used in probabilistic fracture mechanics [18–24], require
the gradient and Hessian of the performance function with respect
to random parameters. In LEFM, the performance function is built
on the SIFs. Hence, both first-and/or second-order derivatives of J-
integral or SIFs are needed for probabilistic analysis. The evaluation
of response derivatives with respect to crack size is a challenging
task, since it requires shape sensitivity analysis. Using a brute-force
type finite-difference method to calculate the shape sensitivities is
often computationally expensive, in that numerous repetitions of
deterministic FEM or FFEM analysis may be required for a complete
reliability analysis. Furthermore, if the finite-difference perturba-
tions are too large relative to finite element meshes, the approxima-
tions can be inaccurate, whereas if the perturbations are too small,
numerical truncation errors may become significant. Therefore, an
important requirement of some fracture-mechanics applications is
to evaluate the rates of SIFs accurately and efficiently.

Consequently, analytical methods based on virtual crack ex-
tension [25–30] and continuum shape sensitivity theory [31–36]
have emerged. In 1988, Lin and Abel [25] introduced a virtual
crack extension technique to calculate the first-order derivative of
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mode-I SIF for a structure containing a single crack. This method
maintains all of the advantages of similar virtual crack exten-
sion techniques introduced by deLorenzi [26,27], Haber and Koh
[28], and Barbero and Reddy [29], but adds a capability to cal-
culate the derivatives of the SIFs. Subsequently, Hwang et al.
[30–33] generalized this method to calculate both first- and
second-order derivatives for structures with multiple crack sys-
tems, axisymmetric stress states, and crack-face and thermal
loading. However, this method requires mesh perturbation—a fun-
damental requirement of all virtual crack extension techniques.
For second-order derivatives, the number of elements affected by
mesh perturbation surrounding the crack tip has a significant ef-
fect on solution accuracy [30–33]. Feijóo et al. [34] applied the
concepts of continuum shape sensitivity theory [35] to calculate
the first-order derivative of the potential energy. Since the en-
ergy release rate (ERR) is the first-order derivative of potential
energy, the ERR or SIFs can be calculated using this approach,
without any mesh perturbation. Later, Taroco [36] extended this
approach to formulate the second-order sensitivity of potential
energy to predict the first-order derivative of the ERR. How-
ever, this presents a formidable task, since it involves calculation
of second-order stress and strain sensitivities. To overcome this
difficulty, Chen et al. [37,38] invoked the domain integral rep-
resentation of the J-integral and used the material derivative
concept of continuum mechanics to obtain first-order sensitivity
of the J-integral for linear-elastic cracked structures. Since this
method requires only the first-order sensitivity of a displace-
ment field, it is simpler and more efficient than existing methods.
Subsequently, Chen et al. [39] extended their continuum shape
sensitivity method for mixed-mode loading conditions. Rao and
Rahman [40,41] developed a sensitivity analysis method for a
crack in an isotropic, linear-elastic functionally graded material
under mode-I and mixed-mode loading conditions. However, all
of the above methods have been developed in conjunction with
FEM.

This paper presents a new FFEM based method for predicting the
first-order sensitivity of J-integral or mode-I and mode-II SIFs, KI and
KII, respectively, for a crack in a homogeneous, isotropic, and two-
dimensional linear-elastic structure subject to mixed-mode (modes
I and II) loading conditions. The method is based on the material
derivative concept of continuum mechanics, and direct differentia-
tion. Numerical examples are presented to calculate the first-order
derivative of the J-integral or SIFs, using the proposed method. The
predicted numerical results from this method are compared with
those obtained using the finite-difference methods.

x2

Master nodes 

Regular region

Boundary Γ0

Singular region with infinite 
similar layers 

Slave nodes 

Crack

r

θ
Γ2

x1Γ1

Fig. 1. Cracked body domain with regular region, singular region, and fractal mesh.

2. Fractal finite element method

In FFEM, the domain of a two-dimensional body containing crack
is divided into a singular and a regular region, with the regular region
enclosing the crack tip and the boundary curve�0 separating the two
regions, as shown in Fig. 1. Both the regular and singular regions are
modeled using conventional finite elements.With the crack tip as the
center of similarity and using � as the similarity ratio, an infinite set
of curves {�1,�2, . . .}, similar to �0 but with proportional constants
(�1,�2, . . .), are generated inside the singular region. Between the
two curves �k−1 and �k, the region is named the k-th layer. Straight
lines that connect the crack tip to the corner nodes lying on �0 are
then created, dividing each layer into a mesh of elements with a
similar pattern in the process. A fractal mesh is thus generated in the
singular region with conventional finite elements only being used.
All nodes located on �0 are called the master nodes (m), while those
inside �0 are called the slave nodes (s).

2.1. William's eigenfunction expansion

Assuming plane crack with traction-free faces subjected to ar-
bitrary far field loading, the linear elastic displacement field at the
crack tip obtained by the William's eigenfunction expansion tech-
nique [15] can be expressed as
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where � is the shear modulus, (r,�) are the polar coordinates, � =
(3− �)/(1+ �) for plane stress and � = 3− 4� for plane strain with �
being the Poisson's ratio.

The coefficients aI,IIn can be determined after imposing loading and
other boundary conditions. It should be noted that the first-degree
coefficients (aI,II1 ) in the series are directly associated with the r−1/2

term in the stresseswhich accounts for the singular stress behavior at
the crack tip, whereas the first terms of the displacement series aI,II0
are associated with rigid body motions. Therefore, the relationship
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