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A gradient smoothing method (GSM) based on strong form of governing equations for solid mechanics
problems is proposed in this paper, in which gradient smoothing technique is used successively over the
relevant gradient smoothing domains to develop the first- and second-order derivative approximations by
calculating weights for a set of field nodes surrounding a node of interest. The GSM is found very stable and
can be easily applied to arbitrarily irregular triangular meshes for complex geometry. Unlike other strong
form methods, the present method has excellent stability that is crucial for adaptive analysis. An effective
and robust residual based error indicator and simple refinement procedure using Delaunay diagram are
then implemented in our GSM for adaptive analyses. The reliability and performance of the proposed GSM
for adaptive procedure are demonstrated in several solid mechanics problems including problems with
singularities and concentrated loading, compared with the well-known finite element method (FEM).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of computer technology in the past
few decades, a broad range of numerical methods have been devel-
oped for different types of problems and achieved great success, e.g.,
the finite element method (FEM), finite difference method (FDM),
finite volume method (FVM) and recently the meshfree methods
[1–3]. In advanced design of products of high precision, adaptive
analysis is becoming an important tool in practical numerical com-
putations [4]. It is a fundamental tool to obtain numerical solutions
with a desired accuracy. In an adaptive procedure, there are three
essential ingredients: (1) an effective and stable numerical method
for arbitrary problem domains and irregular meshes; (2) a tool for
estimating the error of the numerical solution; and (3) an algorithm
to refine the problem domain. The first ingredient is a prerequisite,
without which an adaptive process will break down. The error es-
timator is crucial in assessing the local and global errors in the nu-
merical solution at a stage of analysis, whereby a decision can be
made on whether a refinement is required. The third is performed
according to the error information provided by the error estimate.
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The effectiveness and efficiency of all these three pieces of techniques
are critical to the performance of an adaptive analysis. To conduct
a posteriori error estimation, two values of a quantity—a computed
value and a reference value—are usually required. The first is the
raw data of the numerical solution while the second is derived from
the raw data via postprocessing (smoothing or projection). In FEM,
it is well known that the raw stresses (or derivatives) do not pos-
sess inter-element continuity and have a low accuracy at nodes and
element boundaries. The improved values are obtained by smooth-
ing the inter-element discontinuity. The difference between the raw
and improved values forms a basis for error estimation in FEM so-
lution. Detailed descriptions of this approach can be found in FEM
literatures, e.g., by Zienkiewicz [5].

To establish an adaptive finite element procedure, one of the
most important components is a robust automatic mesh genera-
tion scheme. However, to develop and implement automatic mesh
generators with good control of element size and shape is not an
easy task. During the last decade, many research efforts have been
devoted to this area [6,7] and yet it still remains an active research
topic in computational mechanics and geometry. Currently, auto-
matic mesh generators of triangular elements for complex geometry
are available. Unfortunately, the triangular elements used in FEM
are known to be 'too stiff ' and inaccurate. Compared with the finite
element method, the meshfree methods enjoy much more flexibility
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in model generation since they can approximate field variables en-
tirely based on a group of discrete nodes and require no predefined
node connectivity. For meshfree methods that require background
cells, triangular cells can be used, which will not affect the accu-
racy in the solutions. Nodes used in many meshfree methods can
be irregular or unstructured. Nodes can be quite freely inserted or
deleted without worrying too much about the connectivities. There-
fore, the meshfree methods are particularly attractive for the de-
velopment of adaptive strategies. Several adaptive procedures and
error estimates for meshfree methods have been proposed. Duarte
and Oden [8] derived an error estimator for the h-p cloud methods
that involves only the computation of interior residuals and residu-
als where Neumann boundary conditions are prescribed. Liszka et al.
[9] built discrete models of boundary-value problems with different
adaptive strategies. Chung et al. [10], Gavete et al. [11] and Lee and
Zhou [12] proposed adaptive refinement procedures and error indi-
cators for the element-free Galerkin (EFG) method. Park et al. [13]
developed a posteriori error estimates and an adaptive refinement
scheme of first-order least-squares meshfree method.

Among these developed adaptive meshfree methods, the weak
form methods, e.g., EFG method, are most well established. The
solutions of weak form methods are usually very stable. In contrast,
the development of meshfree strong form methods is rather slug-
gish. Available literatures for the meshfree strong form methods
are still very limited. However, the meshfree strong form method
possesses many good features for adaptive analysis due to its sim-
plicity. The strong formulation is much simple, straightforward and
easy to implement. The meshfree strong form method is considered
a truly meshfree method as it does not even require background
cells that are needed in weak form method for integration. Such
distinct features facilitate the refinement or coarsening scheme in
the adaptive scheme. Moreover, unlike weak form methods, strong
form methods need no integration and hence no mapping is needed.

However, the instability problem has been a key factor that lim-
its the application of meshfree strong form methods that use local
nodes. Researchers have introduced several stabilization schemes
[14,15], in which stabilization factors need to be determined. Many
efforts have been devoted to point collocation methods based on
reproducing kernel approximations [16–18]. Currently, most of the
'full-proof' strong form method is still very much relying on the
structured grid and restricted regular domain. Althoughmethods like
generalized finite difference method (GFDM) [19,20] can be used for
irregular domain and unstructured grid, a proper stencil (node selec-
tion) is somehow still needed for function approximation. Such in-
convenience procedures give difficulties to the strong form method
in the adaptive process. In addition, since nodal distribution during
the adaptation can become highly irregular, a 'proper' stencil can be
costly and difficult to form.

In this paper, a gradient smoothing method (GSM) is proposed
based on strong form governing equations. Gradient smoothing tech-
nique is utilized to construct first- and second-order derivative ap-
proximations by systematically computing weights for a set of nodal
points surrounding a node of interest. Three types of different do-
mains for the gradient smoothing operations are devised. The strong
form of governing equations is directly discretized at nodes using
gradient smoothing repeatedly over relevant gradient smoothing do-
mains. These computations can be easily performed based on an
irregular triangular mesh that can be generated automatically for
complex geometries. The stencil analyses of weighting coefficients
have been conducted for the Laplace operators, and favorable weight
distributions are found. The proposed GSM can effectively overcome
the instability issue, while retaining the strong form feature of sim-
plicity in formulation procedures which is particularly suitable for
adaptive analysis.

A residual based error indicator is then adopted in our GSM for
adaptive analyses. By evaluating the residual of the governing equa-

tion for each triangular cell in the domain, error indicator effectively
identifies the necessary regions to be refined. Simple refinement pro-
cedure using Delaunay diagram is adopted in the adaptive scheme.
Additional nodes can be inserted into the domain easily without
worrying about the nodal connectivity and remeshing the domain.

The layout of this paper is as follows: Section 2 theoretically for-
mulates the GSM. In Section 3, a brief description of a posteriori error
indicator based on residual of the governing equation is provided.
Section 4 illustrates the capabilities of the present method through
some numerical examples including different levels of stress concen-
tration. The performance of the proposed strategy is also assessed
by comparing the convergence rate obtained with those by uniform
refinement. Conclusions are stated in Section 5.

2. Gradient smoothing method (GSM)

2.1. Gradient smoothing

Consider a two-dimensional elastostatic problem governed by the
following equilibrium equation in the domain �:

Lu = f in � (1)

with essential (Dirichlet) boundary conditions

u = u on �u (2)

and natural (Neumann) boundary conditions

Bu = g on �t (3)

where L, B are the differential operators, u is the field variable and f,
g are external force vectors. Eq. (3) is derived using Cauchy's formula

�ijnj − ti = 0 (4)

In the strong form methods, Eqs. (1)–(3) are directly collocated
at the field nodes in the problem domain and on the boundaries,
respectively. The discretized system governing equations are given
as follows:

L(ui) = fi in � (5)

with Dirichlet boundary conditions

ui = ui on �u (6)

and Neumann boundary conditions

B(ui) = gi on �t (7)

where subscript "i” denotes the collocation point.
The governing equations (5)–(7) can be collocated at their cor-

responding field nodes then be assembled and expressed in the fol-
lowing matrix form:

KU = F (8)

whereK is the stiffnessmatrix, F is the force vector andU is the vector
of unknown nodal values. Note that the stiffness matrix resulted
from collocation is generally unsymmetric. The vector of unknown
nodal values can be easily solved as

U = K−1F (9)

if K is not singular and well-conditioned.
In the present method, the problem domain � is discretized by

triangular cells as shown in Fig. 1. For the i-th node, a smoothing do-
main �i is generated by sequentially connecting the centroids with
mid-edge points of surrounding triangular cells. �i is the boundary
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