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a b s t r a c t

In this paper a total Lagrangian weak form quadrature element formulation of spatial shear-rigid beams
undergoing large displacements and rotations is presented. A geometrically exact beam model with zero
transverse shear deformation is adopted. Quaternion representation of finite rotations of spatial beams is
used to avoid possible singularity in parameterization of rotation. The formulation reduces the number
of degrees of freedom within the element as well as satisfies the demand of strain-objectivity. Several
numerical examples are presented to illustrate the feasibility of the formulation.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Geometrically nonlinear analysis of beams allowing for large
displacements and rotations has been of concern in various
engineering disciplines. Since Simo and Vu-Quoc [1,2] extended
the pioneering work of Reissner [3] and developed the geome-
trically exact Reissner–Simo beam model, a great deal of research
work in regard to static and dynamic analyses of beams under-
going large displacements and rotations has been done over the
past few decades. In the Reissner–Simo beam model, extension,
flexure, torsion and shearing are considered, being pertinent to
the linear Timoshenko beam model. Corresponding to the linear
Euler–Bernoulli beam model, a geometrically exact beam model
excluding shearing can also be established. This shear-rigid beam
model can be seen as a kinematical simplification of Reissner–
Simo (shear-deformable) beam model. In spite of kinematical
complexity, the shear-deformable beam model enjoys mathema-
tical simplicity and elegance, as has been shown in the work of
Reissner and Simo [1–3]. In contrast, the shear-rigid beam model
is kinematically simple but it may run into mathematical complex-
ity due to the zero shear deformation constraints. Nonetheless, it
possesses significant advantages in nonlinear analysis of beams.
First, it is well-known that the transverse shear deformation is
trivial for slender beams despite large displacements and rota-
tions. It is therefore possible to develop a numerical system with
less number of degrees-of-freedom for the shear-rigid beam

model. Second, precautions have to be taken to eliminate locking
phenomenon for displacement-based formulations of the shear-
deformable beam model while this is unnecessary for the shear-
rigid beam model. Besides, the account of shear deformation may
impose strong time stepsize restrictions in dynamic analysis of
beams [4].

Although the majority of research work over the past three
decades is about the shear-deformable beam model, the shear-
rigid beam model still receives attention of researchers in non-
linear analysis of beams. By adopting modified Hu-Washizu varia-
tional principle, Saje proposed a finite element formulation for
planar slender straight beams [5]. Gerstmayr and Shabana ana-
lyzed thin beams and cables using absolute nodal coordinates [6].
Zhao and Ren proposed a quaternion-based singularity-free slen-
der beam element, using a sequential interpolating method to
ignore transverse shear deformation [7]. A recent investigation of
planar slender beams [8] indicates that nonlinear analysis of
slender geometrically exact beams based on the shear-rigid beam
model offers satisfactory results. The present paper is an endeavor
to deal with spatial beams with large displacements and rotations
based on the shear-rigid beam model.

Differing from planar beams considerably, spatial rotations of
three-dimensional beams falls within multiplicative special ortho-
gonal group and the configuration space of the beam is a nonlinear
manifold. As a result, the accuracy, robustness and efficiency of
numerical formulations are strongly dependent upon the para-
meterization and approximation of spatial rotations. Many repre-
sentations for spatial rotations, including the nine-parameter
orthogonal tensor, the three-parameter rotation vector, Rodrigues'
parameters, quaternions, have been proposed. Detailed accounts of
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these parameterizations may be found in [9,10]. For constrained
rotations, Ibrahimbegović et al. used the incremental rotation
vector to handle geometrically exact shell model with no drilling
rotations [11]. Among these parameters, the qurternion-based
rotation has been shown to be a convenient representation of
spatial rotations. A recent study further highlights the advantages
of the quaternion-based representation of spatial rotations [12].
In this paper, quaternions are used to express cross-section rotations
and corresponding strain measures to avoid singularity problems
that may be encountered when rotation vectors are used in a total-
Lagrangian formulation.

Over the years, numerical methods adopting displacement-
based formulations have been dominant in nonlinear analysis of
geometrically exact beams despite the development of other
formulations such as hybrid-mixed finite element formulation
[13] and stress-based formulation [14]. In most finite element
formulations wherein low order displacement-based finite ele-
ments are used for shear-deformable beams, appropriate proce-
dures have to be taken to eliminate locking phenomenon [15].
Among various approaches to elimination of locking, high-order
approximation is a natural choice but it has been seldom seen in
finite element formulations. The weak form quadrature element
method (QEM) is an efficient numerical method wherein numer-
ical integration is carried out before derivatives are approximated
using differential quadrature analogs. Because of the feasibility of
high-order approximation and the coincidence of integration
points and nodes within an element, the QEM can use much
fewer degrees-of-freedom, even a single element for a beam
member, to tackle many problems with high accuracy. So far the
QEM has shown remarkable superiority in beam-like structural
analysis [16–20]. The successful application of the QEM to non-
linear analysis of geometrically exact shear-deformable beams
demonstrates its effectiveness with no compromise in strain-
objectivity [16,20].

In this paper, the QEM is applied to a total Lagrangian
formulation of the shear-rigid beam model. The total Lagrangian
formulation is favored over either the updated Lagrangian for-
mulation or the Eulerian formulation in quadrature element
analysis. This is mainly attributable to fact that the advantages of
the unaltered reference configuration in the total Lagrangian
formulation can be exploited to the maximum.

One of the aims of the present paper is to weigh the pros
against the cons of the weak form quadrature element analysis
of shear-rigid geometrically exact beams. For spatial shear-rigid
beams, two rotation variables of a certain cross-section are
expressed by translations on the centroidal axis for the shear-
rigid condition to enforce the zero shear deformation constraint,
while the drilling rotation variable remains independent. The

major merits of the present approach include: (a) satisfaction of
strain-objectivity without extra effort; (b) reduction of the number
of degrees-of-freedom compared with shear-deformable beams;
(c) circumvention of the so-called interdependent perplexity of
translations and rotations of spatial shear-deformable beams [21].

The remaining portion of the present paper is organized as
follows. Section 2 sums up spatial geometrically exact shear-rigid
beam theory, followed by the weak form quadrature element
formulation in Section 3. Section 4 presents three benchmark
examples to demonstrate the effectiveness of the formulation.
Conclusions are drawn in Section 5. Relatively lengthy explicit
expression of the tangent stiffness matrix for the beam element is
given in Appendix A. In addition, a proof of the strain-objectivity
of the present formulation is furnished in Appendix B.

2. Shear-rigid geometrically exact beam theory

The beam model in the present paper allows for flexure, torsion
and extension but neglects transverse shear deformation. Since no
restriction is imposed on the magnitude of the displacements or
rotations in the model, it is geometrically exact. In general, a
reference configuration and a current configuration are needed for
description of a spatial beam. As shown in Fig. 1, the reference
configuration of the beam is assumed to have straight centroidal
axis and a right-handed orthonormal frame fE1; E2; E3g serving
as the three base vectors for the Cartesian coordinate system is
introduced. The origin of the frame is located on the centroidal
axis of the reference beam. The frame is attached to the beam
cross-section and its axes oriented along the principal axes of
inertia. The cross-section of the beam is assumed to be rigid and
therefore the shape remains unchanged during deformation.

In the current configuration, a cross-section of the beam is
determined by the position vector of its centroid, denoted by r,
and an orthonormal frame fe1; e2; e3g where e3 points to the
normal direction of the cross-section and e1 and e2 are aligned
with two principal axes of the cross-section inertia. In the case of
initially curved beam, an initial configuration is usually needed.
Similar to the description of the current configuration, position
vector r0 and orthonormal frame fe01; e02; e03g are used corre-
spondingly to locate a cross-section in the initial configuration.
Define s as the arc length parameter of the beam. The following
vectors are introduced in the current and the initial configura-
tions:

a¼ ∂r
∂s
; b� ei ¼

∂ei
∂s

a0 ¼
∂r0

∂s
; b0 � e0i ¼

∂e0i
∂s

ð1Þ

which are related to the strain measures of the beam by

a¼ γz1e1þγz2e2þðεzþ1Þe3;
b¼ κz1e1þκz2e2þγz3e3;
a0 ¼ γ01e01þγ02e02þðε0þ1Þe03;
b0 ¼ κ01e01þκ02e02þγ03e03: ð2Þ
The strain measures are then extracted from Eq. (2), leading to
transverse shear strains of the cross section ðγz1�γ01Þ and
ðγz2�γ02Þ, bending strains ðκz1�κ01Þ and ðκz2�κ02Þ, and axial
and torsion strain ðεz�ε0Þ and ðγz3�γ03Þ, respectively. The strain
vectors for a spatial beam are defined as

γ¼ γz�γ0 ¼ γz1�γ01 γz2�γ02 εz�ε0
� �T

;

κ¼κz�κ0 ¼ κz1�κ01 κz2�κ02 γz3�γ03
� �T

ð3Þ

In the shear-rigid hypothesis of a beam, the tangent of the
centroidal axis of the beam is perpendicular to the cross-section,
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Fig. 1. Reference, initial and current configurations of beam.
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