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a b s t r a c t

Structural optimization using gradient-based methods is a powerful design technique that is well suited
for the design of high-performance structures. However, the ever-increasing complexity of finite-
element models and design formulations results in a bottleneck in the computation of the gradients
required for the design optimization. Furthermore, in light of current high-performance computing
trends, any methods intended to address this bottleneck must efficiently utilize parallel computing
resources. Therefore, there is a need for solution and gradient evaluation methods that scale well with
the number of design variables, constraints, and processors. We address this need by developing an
integrated parallel finite-element analysis tool for gradient-based design optimization that is designed to
use specialized parallel solution methods to solve large-scale high-fidelity structural optimization
problems with thousands of design variables, millions of state variables, and hundreds of load cases.
We describe the most relevant details of the parallel algorithms used within the tool. We present
consistent constraint formulations and aggregation techniques for both material failure and buckling
constraints. To demonstrate both the solution and functional accuracy, we compare our results to an
exact solution of a pressure-loaded cylinder made with either isotropic or orthotropic material. To
demonstrate the parallel solution and gradient evaluation performance, we perform a structural analysis
and gradient evaluation for a large transport aircraft wing with over 5.44 million unknowns. The results
show near-ideal scalability of the structural solution and gradient computation with the number of
design variables, constraints, and processors, which makes this framework well suited for large-scale
high-fidelity structural design optimization.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few decades, increasingly powerful high-
performance computational resources and the development of
sophisticated numerical algorithms have enabled the solution of
large-scale, high-fidelity structural design optimization problems
[63]. We use the term large-scale to refer to design problems with
a large number of design variables, structural state variables, load
cases, or constraint functions, or some combination thereof, such
that significant high-performance parallel computing resources
are required to solve the problem within a reasonable time.
This definition will change with advances in high-performance
computing hardware. At present, this definition of large-scale

translates to design problems with more than Oð105Þ design
variables, Oð106Þ state variables, or Oð102Þ load cases. Several
authors have presented solution methods for large-scale problems,
including structural shape and sizing problems [52,54,53], large
3D topology problems with Oð106Þ design variables [12,64], and
high-fidelity multidisciplinary design optimization problems
involving structural analysis as a discipline with Oð106Þ state
variables [33].

In this paper, we present an integrated approach to parallel
analysis and gradient evaluation for large-scale structural design
optimization problems. We have developed this framework for the
analysis and design of the thin-shell structures that are used in
many high-performance aerospace applications where strength,
weight, and stiffness are critical design considerations. These
aerospace structures are manufactured using high-performance
materials, such as laminated composites or advanced metallic
alloys, that achieve high stiffness-to-weight and strength-to-
weight ratios. As a result, the design problem involves the
simultaneous consideration of the geometry of the structure, the
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sizing of the members and, in the case of composites, manufactur-
ing details such as the lamination stacking sequence [1]. Therefore,
the structural design problem may include stacking sequence
design optimization schemes that can significantly increase the
dimensionality of the design space [62,23,24,31]. In addition,
slender shell structures subjected to in-plane loading are suscep-
tible to buckling and, as a result, the structural requirements
frequently includes both strength and buckling constraints. Within
this framework, we impose the buckling constraints using a
global–local analysis approach in which a global model determines
the edge-loads for a local stiffened panel buckling problem. Other
authors have reformulated these design problems using a bilevel
approach where the global design problem determines the thick-
nesses, and the local design problem determines the lamination
sequence [40,41,21,44].

Although gradient-free optimization methods have been suc-
cessfully applied to many important structural design problems,
including lamination stacking sequence design [35,42,2] and sizing
and shape optimization problems [25], these applications involve
at most Oð102Þ design variables. Gradient-free methods are easy to
use since they require only function values, but they scale very
poorly with the dimensionality of the design space. Since we focus
on large-scale high-fidelity applications, we use gradient-based
methods and tackle the challenge of efficiently evaluating the
gradient of the objective and constraint functions in the design
optimization problem.

When we evaluate the gradients required for optimization
there are two main concerns: computational time and accuracy.
Long gradient computational times might limit the number of
optimization iterations that can be performed, while low accuracy
might limit the ability of the optimizer to solve the optimization
problem to a tight convergence tolerance.

For large-scale structural design problems with large numbers
of design variables and constraints, the computational time
required to compute the gradients exceeds the computational
time required for the analysis. Therefore, gradient evaluation is
frequently the computational bottleneck [63]. To minimize the
gradient computational time, we use the adjoint method, which
requires additional computational time for each gradient. How-
ever, the overall gradient evaluation time scales very weakly with
the number of design variables. We detail the costs of our adjoint
implementation in Section 5.3.

To address gradient accuracy, we focus on minimizing the
amount of computational time required to evaluate the gradient
to the maximum accuracy possible. To achieve this goal, we do not
use finite-difference methods to evaluate the derivatives. Instead,
we exclusively use hand-coded derivative routines that achieve
good computational performance while avoiding the subtractive
cancelation issues suffered by finite-difference methods. We note
that other authors have used automatic differentiation methods,
rather than hand-coded routines, to obtain accurate derivatives
[47]. To verify the accuracy of our derivative implementation, we
use the complex-step derivative evaluation technique. The
complex-step method uses a complex perturbation of the vari-
ables to determine the derivative and does not suffer from
subtractive cancellation. As a result, a very small step size may
be used, yielding derivatives with the same number of significant
digits as the functional estimate [61,49].

In this paper we present a fully verified, integrated framework
for the parallel analysis and gradient-evaluation of shell structures.
We verify that our methods achieve the optimal solution and
functional accuracy. In our opinion, within the context of design
optimization, functional accuracy and solution accuracy are of
equal importance, yet functional accuracy is often overlooked in
structural optimization applications. In addition, we verify our
gradient evaluation methods using a complex-step derivative

approximation technique that enables accurate verification of the
derivatives without loss of accuracy due to subtractive cancella-
tion. We have integrated the developments presented in this paper
into a sophisticated parallel finite-element code that we call the
Toolkit for the Analysis of Composite Structures (TACS). We have
used TACS for large-scale structural analysis of composite beams
[29], structural topology optimization [36,37], lamination
sequence design [31], and both static and dynamic aeroelastic
design optimization [28,33,30,39,32].

1.1. The model optimization problem

Since structural weight reduction is critical in many aerospace
applications, the most common structural design problem is to
minimize the structural mass subject to stress and possibly
buckling constraints. These structural constraints are imposed at
a series of design load cases to ensure the safety of the aero-
space vehicle within a prescribed operational envelope. With
this standard structural design optimization problem in mind,
we pose the following generic structural design optimization
problem:

minimize f ðx;u1;…;unℓ Þ
with respect to x; u1;…; unℓ

governed by RiðXNðxGÞ; xM ;uiÞ ¼ 0
for 1r irnℓ such that f iðx;uiÞr1 xlrxrxu ð1Þ
where f ðx;u1;…;unℓ Þ is the objective function and f iðx;uiÞARnf

represents a vector of constraints for the ith load case. Note
that there are a total of nℓ load cases. The design variables
x¼ ðxG; xMÞARnx are partitioned into either geometric or mate-
rial design variables that we denote xGARnxg and xMARnxm ,
respectively. The distinction between geometric and material
design variables arises at the element level: geometric design
variables modify the element nodes, and material design
variables modify the element constitutive behavior. This distinc-
tion between design variables is critical for high-performance
derivative evaluation methods. Treating the geometric and
material variables uniformly would lead to computationally
inefficient derivative evaluation methods. The finite-element
residuals RiAR6n depend on the finite-element nodal locations
XNðxGÞAR3n, the material design variables xM , and the state
variables uiAR6n, for the ith load case. Note that we write the
nodal locations as functions of the geometric design variables to
ensure that the partial derivative ∂XN=∂xG is computed only once
in each gradient evaluation.

While there are numerous techniques available for solving the
optimization problem (1), we employ a reduced-space approach
where the governing equations for each load case, RiðXNðxGÞ;
xM ;uiÞ ¼ 0, are solved at each optimization iteration, and the
optimization problem is recast solely in terms of design variables.
In the reduced-space approach, which is also referred to as the
nested analysis and design (NAND) architecture [20], the state
variables are implicit functions of the design variables, and the
adjoint or direct method must be used to determine the objective
and constraint gradients. The reduced-space method is an alter-
native to full-space approaches that solve the design and analysis
problems simultaneously [20,9,10]. We do not solve the optimiza-
tion problem (1) directly using our framework, but we instead
provide the objective and constraint values and gradients to a
gradient-based optimizer. Typically, we solve the optimization
problem with the Python-based optimization interface pyOpt
[57], which provides access to several optimization packages.
The optimization package we use here is SNOPT [18]. While there
is ongoing work to parallelize optimization algorithms, especially
in the context of PDE-constraint optimization [9], for many
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