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a b s t r a c t

A new structure-preserving algorithm for simulating the nonlinear dynamics of geometrically exact rods
is developed. The method is based on the simultaneous discretization in space and time of Hamilton's
variational principle. The resulting variational integrator is explicit, second-order accurate and can be
identified with a Lie-group symplectic partitioned Runge–Kutta method for finite element discretiza-
tions of rods involving large rotations and displacements. Numerical examples allow to verify that the
algorithm presents an excellent long term energy behavior along with the exact conservation of the
momenta associated to the symmetries of the system.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The formulation of continuum based theories for rods has
captured the interest of researchers during decades [60]. The
motivation for developing such theories is rooted in attempting
to model complex physical problems arising in the dynamics of
slender solids by means of a dimensionally reduced approach. This
point of view has boosted the construction of models depending
on one spatial variable and the time [1,73].

One of the most successful models1 for describing the
dynamics of elastic rods undergoing finite deformation has been
proposed by Simo in [65]. This geometrically exact formulation
follows a director-type approach to describe the kinematics of the
rods and corresponds to a three-dimensional generalization of
Reissner's original model [60,61]. In a posterior work, Simo and
Vu-Quoc [69,70] proposed a numerical scheme based on combin-
ing the finite element method (FEM) with a modified version of
Newmark's scheme for time integration. Other authors have also
made highlighting contributions. For example, an initially curved
reference configuration for the rod has been considered in
[31,32,37]. A total Lagrangian formulation has been proposed in
[11] and revisited in [47]. Some important numerical issues such as
the construction of non-locking elements or frame-indifferent
formulations can be consulted in [8,35,62,63]. An alternative

formulation based on some concepts of geometric (Clifford)
algebra is presented in [58]. The list of works largely exceeds the
mentioned ones, which only constitute some relevant examples;
a more complete survey can be consulted in [53].

From the point of view of the applications, this formulation has
also received considerable attention. In [72] Simo and Vu-Quoc
applied the model to study the dynamics of earth-orbiting flexible
satellites with multibody components. It has also been used for
studying the dynamics of flexible mechanisms [7,10], robotic
technology [78], the coupled geometric and constitutive nonlinear
response of structures and buildings in the static [56] and dynamic
cases [57], including applications to passive control in earthquake
engineering [73,53]. The application of the model to the study of
slender structures made of composite materials has been carried
out in [75–77].

The formulation of time integrators for the Reissner–Simo theory
of elastic rods results to be a particularly challenging task since the
model describes a dynamical system evolving on a nonlinear mani-
fold rather than on a linear space. Several approaches have been
proposed in order to design time integrators respecting the geometry
of the configuration space. The design of structure-preserving algo-
rithms for dynamics of rigid bodies is closely linked to the design of
new methods for elastic rods. In this sense, Simo and Wong [71]
developed a midpoint algorithm on SOð3Þ2 which conserves the total
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1 An alternative to geometrically exact models is given by the co-rotational

approach for rods, see for example [15].

2 The symbol SOð3Þ denotes the non-commutative group of proper rotations
[47].
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energy and the norm of the total momentum. They also formulated
an implicit energy and momentum conserving algorithm. In [70]
Newmark's method was extended to include SOð3Þ yielding to a
scheme able to handle arbitrarily large rotations and displacements.
Even though this scheme has demonstrated to be useful in several
applications [11], Mäkinen states [46] that it only constitutes an
approximated version of the correct formulas, which are given in [2].

In spite of the above results, it is widely recognized that New-
mark's family of implicit schemes fails to preserve the invariants of
nonlinear Hamiltonian systems with symmetry [68]. Moreover, the
stability and accuracy properties are not guaranteed in the non-
linear range [3,4]. A further step towards the development of robust
schemes is given by formulation of the so-called the energy and
momentum conserving (E–M) methods. They have been extended
to elastic rods by Simo et al. in [67]. An alternative to E–M methods
is given by the symplectic-momentum methods which are charac-
terized by the preservation of certain skew-symmetric bilinear form
on the phase space3 along with the exact conservation of the
momenta associated to symmetries of the Lagrangian. A compar-
ison between symplectic and E–M schemes is presented in [24].
First-order accurate algorithms that exhibit controllable energy
dissipation and momentum conservation are formulated in [3]
and second-order methods can be found in [4].

More recently, the attention have been turned towards the so-
called variational integrators (VI) which are methods obtained from
a discrete version of Hamilton's principle for conservative systems
[51,52,59,79]. These methods present remarkable properties
among which are: (i) they are symplectic, (ii) they exactly conserve
the momenta associated to the symmetries of a discrete Lagran-
gian and (iii) they show an excellent long time energy behavior.
Moreover, higher order methods can be constructed following a
systematic procedure. An overview of the method can be found in
[44] and the case of continuum systems in considered in [49,81].
The construction of asynchronous VI's is carried out in [43] and
development of generalized Galerkin VI's, including dynamical
systems evolving on Lie groups, can be consulted in [41,39,40]. In
summary, variational methods constitute an extraordinarily ver-
satile framework for the systematic construction of structure-
preserving time integrators [29] that can be applied to a wide
variety of problems arising in different fields of science and
engineering [41,55]. However, the variational techniques have
not been applied to formulate structure-preserving methods for
geometrically exact rods.

Innovative numerical models of elastic rods are currently used
in a wide range of subjects areas such as computational biophysics,
the dynamics of interacting biomolecules and filaments, synthetic
polymers and new materials based on nano-technologies. For
example, in [38] a numerical model for the dynamics of viscous
Kirchhoff rods is used for studying problems of biological sig-
nificance, including the super-coiling and instability in closed rods
and the self-assembly behavior of fibril structures such as certain
types of bacteria. Goriely and Tabor [25–27] study certain theore-
tical aspects of Kirchhoff's rods with applications in the numerical
simulation of thin filaments. The application of rod models to the
study the growth of certain plants can be consulted in [28]. In [23]
a theory of elastic filaments is extended to consider biological
systems that display competition between two helical structures
of opposite chirality. Balaeff et al. [6] extend the classical Kirchh-
off's model applied to deoxyribonucleic acid (DNA) to account for
sequence-dependent intrinsic twist and curvature, anisotropic
rotational stiffness and electrostatic interactions. Yang et al. [80]
construct a finite element (FE) model for inextensible elastic rods

including self-contact and use it for modelling a DNA polymer
composed of thousands of base pairs. A survey about the numer-
ical modelling of super-helical DNA can be consulted in [64].
Therefore, it is necessary to formulate robust time integrators for
simulating the dynamics of rods undergoing complex morpholo-
gical changes.

In this work, a new explicit variational integrator for simulating
the dynamics of geometrically exact rods is formulated. Its con-
struction is built on the simultaneous discretization in space and
time of the action functional. To this end, the finite element
method is applied the continuum problem to obtain a finite-
dimensional semi-discrete problem. Then, standard procedures in
variational integration are applied on the nodal variables of the
mesh to formulate a structure-preserving Lie-group partitioned
Runge–Kutta method. The new time integrator enjoys a number of
remarkable features: (i) it is explicit if an appropriate quadrature
rule is used to compute the discrete kinetic energy, (ii) it is
symplectic, (iii) it exactly conserves the momenta associated to
the symmetries of the discrete Lagrangian, (iv) it is second-order
accurate, (v) it shows an energy drift that remains bounded over
exponentially long periods of times and, (vi) since it is explicit, it
avoids using iterative schemes to solve large systems of nonlinear
equations.

2. Geometrically exact rods

In this section the Lagrangian point of view of the mechanics is
considered to deduce the balance equations for geometrically
exact rods in finite deformation. Special emphasis is given to the
non-linear nature of the configuration manifold. Additionally, the
Hamiltonian structure of the problem is also addressed along with
the invariants of the dynamics.

2.1. Model description

Kinematics: Let fEig and feig be the material and spatial inertial
frames, which are orthogonal and coincident.4 The reference
configuration is given by a straight rod of length L with constant
cross section A�R2. Then, the position vector of a material point
in this configuration is

Xðs; ξ1; ξ2Þ ¼ sE1þξ1E1þξ2E2;

where sA ½0; L� is an arch-length coordinate and ðξ1; ξ2ÞAA are
coordinates on the cross section. The reference curve φ0 is defined
as the geometric place of all the points of the form Xðs;0;0Þ. The
position vector of a material point in the current configuration is
given by

xðs; ξ1;ξ2Þ ¼φðsÞþξ1t1ðsÞþξ2t2ðsÞ; ð1Þ
where the spatial curve φ : ½0; L�-R3 is obtained by adding a
displacement onto φ0 and the vectors ti ¼ΛEi with Λ :
½0; L�-SOð3Þ define an orthonormal coordinate system character-
izing the current orientation of the cross-section [65,37], see Fig. 1.

The configuration space, Q, is the set of all the smooth-enough
fields

Φ� ðφ;ΛÞ : ½0; L�-R3 � SOð3Þ; ð2Þ
subjected to the prescribed boundary conditions Φð0Þ ¼Φ0 and
ΦðLÞ ¼ΦL and to the restriction φ;s � t140 [67]. Due to the non-
commutative nature of SOð3Þ, Q results to be a nonlinear differ-
entiable manifold [50,68]. Thereby, using the spatial rule to update

3 The simultaneous conservation of the total energy and the symplectic
structure is not possible for methods with constant time step [36,41,22].

4 Notation: Latin and Greek indexes range over {1,2,3} and {2,3}, respectively.
The symbols ð�Þ;x , _ð�Þ and SOð3Þ denote differentiation with respect to x, time
differentiation and the linear space of skew-symmetric tensors, respectively.
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