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a b s t r a c t

This paper revisits the buckling analysis of a benchmark cylindrical panel undergoing snap-through
when subjected to transverse loads. We show that previous studies either overestimated the buckling
load and identified a false buckling mode, or failed to identify all secondary solution branches. Here, a
numerical procedure composed of the arclength and branch switching methods is used to identify the
full postbuckling response of the panel. Additional bifurcation points and corresponding secondary paths
are discovered. Parametric studies of the effect of the rise, thickness, and boundary conditions of the
panel on the buckling and postbuckling responses are also performed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cylindrical shells are widely used in aerospace, mechanical, and
civil engineering applications as structural components in aircraft,
tanks, pipelines, and offshore platforms. These structures have
efficient load-carrying capabilities but exhibit high risk of buckling
failures.

Early studies on the buckling analysis of cylindrical shells used the
classical buckling theory to approximate the bucking loads and mode
shapes by assuming membrane prebuckling stress states [1–4]. This
approach ignores bending effects before buckling and usually over-
estimates buckling loads. Later, more rigorous buckling analyses were
performed with the consideration of linear prebuckling deformations
[5–8] and nonlinear prebuckling deformations [9,10], but did not
focus on postbuckling responses. Koiter [11] proposed a perturbation
approach to conduct initial postbuckling analysis, which was later
adopted by many researchers [12–15]. These methods are typically
valid only in the vicinity of critical points. Potier-Ferry and cowor-
kers [16–19] extended Koiter's idea and developed an asymptotic-
numerical method to compute nonlinear postbuckling responses.

Other numerical approaches widely used to perform nonlinear
postbuckling analysis of shell structures are path following schemes.
Among them, the Newton–Raphson methods were initially attractive

for solving large nonlinear systems but they usually lose convergence
at limit points and cannot trace the unstable equilibrium paths. Some
of these disadvantages were solved by replacing the load control
with displacement control [20,21], but this approach still fails to track
the whole postbuckling path beyond a displacement limit point. Riks
[22] proposed a more efficient arclength method that can trace the
entire (stable and unstable) postbuckling equilibrium paths. Modified
versions were later proposed by Crisfield [23] and Tsai et al. [24] to
handle more complicated postbuckling behavior.

Despite the great progress made in the path following approaches,
some features of the postbuckling behavior still remained unnoticed.
A circular cylindrical panel, studied by Sabir [25], was afterwards used
by many researchers [26–35] as a benchmark example to demon-
strate the capability of shell or shell-like elements in simulating large
deformations buckling and postbuckling processes. All these research-
ers successfully identified the limit-point buckling and the corre-
sponding symmetric postbuckling responses by utilizing path follo-
wing methods. However, these studies did not correctly identify the
physical buckling behavior of this panel. Recently, Wardle et al.
[36,37] found using the asymmetric meshing technique (AMT) that
a bifurcation buckling in asymmetric mode exists before the first limit
point on the equilibrium path.

In this work, an arclength method combined with a branch-
switching method [38,39] is used to perform the nonlinear buckling
and postbuckling analysis of cylindrical panels. For the benchmark
example, we find that two previously undetected pairs of bifurcation
points and consequently two other pairs of secondary paths exist. A small
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interval of one secondary path is stable, while the other equilibria on
this path and all states on the other path are unstable. Intervals of
stable equilibria identified on secondary paths, while not reachable
through a continuous stable path, are still important: perturbations in
the system may lead to dynamic jumps to these states. The identifica-
tion of additional unstable equilibria also reveals that the degree of
instability of the system is higher than what researchers previo-
usly found.

The numerical approach used in this paper has several advan-
tages over the AMT recommended by Wardle et al. [36,37]: (1) no
prior knowledge of the bifurcation modes is needed, and (2) the
same mesh is used for tracing all secondary paths of the structure.
The accuracy and reliability of this method is tested on the bench-
mark example.

This paper is organized as follows. In Section 2, we briefly
introduce the nonlinear buckling analysis algorithm. In Section 3,
we apply the method to a benchmark example and compare with the
results available in the literature. Additional bifurcation points and
secondary paths are also obtained in this section. In Section 4, we
perform a parametric study of the influence of the rises, thicknesses
and boundary conditions on the variation of critical points and
postbuckling responses. Conclusions are outlined in Section 5.

2. Nonlinear buckling and postbuckling analysis

In this section, we briefly introduce a numerical procedure,
combining the arclength and branch-switching methods, which
can reliably determine all critical points and corresponding post-
buckling responses including bifurcated secondary paths.

2.1. Critical points on the equilibrium path

An elastic system typically loses stability when the tangent
stiffness K becomes singular. Points on the equilibrium path with
singular tangent stiffness are called critical points, further differ-
entiated as limit and bifurcation points (Fig. 1). A null right
eigenvector z of the tangent stiffness K at a critical point satisfies

Kz¼ 0: ð1Þ

When an elastic structure is subjected to a conservative
loading, the tangent stiffness K is symmetric and Eq. (1) also
implies zTK¼ 0. For an incremental-iterative method, the incre-
mental displacement Δu and loading Δλ satisfy KΔu¼Δλq.

Premultiplying both sides with zT and using zTK¼ 0, we get

zTqΔλ¼ 0 ð2Þ
Three configurations satisfy Eq. (2): (1) Δλ¼ 0, denoting a limit
point (Fig. 1(a)); (2) zTq¼ 0, indicating a bifurcation point (Fig. 1(b));
or (3) Δλ¼ 0 and zTq¼ 0 simultaneously, implying the coincidence
of a bifurcation and limit point. In practice, limit points are indeed
identified as points of zero variation in the load factor, but bifurca-
tion points are not detected based on the above. Instead in this
paper, several lowest eigenvalues of the tangent stiffness K are
monitored when tracing the primary equilibrium path. Zero eigen-
values of the tangent stiffness indicate the location of critical points,
out of which, those not already identified by Δλ¼ 0 are the
bifurcation points. For the case of a multiple bifurcation point or of
the coincidence of a limit point and a bifurcation point, multiple
eigenvalues are zero at the same time. Finally, note that only
conservative systems are considered in this paper.

2.2. Switching to secondary paths

After the detection of bifurcation points, the branch-switching
method proposed in [38,39] is adopted to switch from the primary
equilibrium path to a secondary path. At a simple bifurcation
point, the eigenvector ϕj of the zero eigenvalue λj indicates the
direction of one secondary path j, and can be used as a perturba-
tion of the solution on the primary path. To switch to the
secondary path j, the eigenvector ϕj is scaled and added to the
solution in the following way:

uj ¼ u7
JuJ
τj

ϕj

Jϕj J
ð3Þ

where τj is a scaling factor, u is the converged displacement vector
on the primary path, and uj represents a predictor for the
secondary path j. The arclength method can then be used to
correct the predictor uj and follow additional solutions on the
secondary path j.

Two important aspects of this branch-switching method are
noted here. First, two directions are typically associated with one
secondary path, as shown in Fig. 1(b) and they correspond to the
plus and minus sign in Eq. (3). Second, the value of the scaling factor
τj is usually less than 100 based on our simulation experience (a too
large value can lead to a solution that remains on the primary path,
while a too small one may lead to divergence). An adaptive
approach with a restart option that can rerun a new simulation
directly from the bifurcation point is therefore recommended to

Fig. 1. Critical points on equilibrium paths. (a) A limit point. (b) A bifurcation point.
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