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Abstract

Discrete singular convolution (DSC) method has been proposed to obtain the frequencies and buckling loads of composite plates. By using
geometric transformation, the straight-sided quadrilateral domain is mapped into a square domain in the computational space using a four-node
element. Plates having different geometries such as rectangular, skew, trapezoidal and rhombic plates are presented. The obtained results are
compared with those of other numerical methods. Numerical results indicate that the DSC is a simple, accurate and reliable algorithm for
vibration and buckling analyses of composite plates.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A variety of numerical methods are available today for engi-
neering analysis. These numerical approaches have been used
extensively for solving linear and nonlinear differential equa-
tions. Discrete singular convolution (DSC) method is a new
method that was introduced by Wei [1,2]. As stated by Wei
[3–5], singular convolutions are a special class of mathematical
transformations, which appear in many science and engineer-
ing problems, such as the Hilbert, Abel and Radon transforms.
In fact, these transforms are essential to many practical applica-
tions, such as computational electromagnetic signal and image
processing, pattern recognition, topography, molecular poten-
tial surface generation and dynamic simulation [6,7]. Several
researchers have applied the DSC method to solve a variety of
problems in different fields of science and engineering [8–15].

The analysis of composite plates and straight-sided plates has
been the subject of the research of structural and mechanical
engineering [16–28]. Li et al. [22] presented a spline finite strip
analysis of arbitrary-shaped general plates. Cheung et al. [23]
also developed a finite strip analysis for static and vibration
analysis of general plates. In these studies, cubic serendipity
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shape functions were first employed for arbitrary-shaped gen-
eral plates by finite strip method. Following Wang and Cheng,
Lim et al. [28] also used a similar approach to analyze irregular
plates using the finite strip method in conjunction with orthogo-
nal polynomials. Kitipornchai et al. [29] studied the buckling of
skew plates by the method of Rayleigh–Ritz method. Liew and
Han [25,30] introduced a mapping technique to apply the differ-
ential quadrature (DQ) method for analysis of plates. Buckling
analysis of skew plates has been presented by Wang et al. [31].
Liew et al. [32,33] have investigated vibration characteristic of
thick skew plates. Chen et al. [34] investigated the shear de-
formation for free vibration of symmetrically laminated thick-
trapezoidal plates using p-Ritz method. Three-dimensional
vibration analysis of a cantilevered parallelepiped is presented
by Lim [35] via exact and approximate solutions.

Composite laminated plates are also common structural ele-
ments in many kinds of high-performance surface and air vehi-
cles. Such structures are widely used reinforced slabs or plates,
ship hulls, as floors in bridges, fiber reinforced plastic struc-
tures. Thus, frequencies and buckling loads of such structures
are important in the design of systems. As a consequence, the
vibration and buckling of isotropic and laminated composite
plates have been extensively studied [26–28,36–39]. A long list
of references on free vibration of laminated plates are given, for
example, in Refs. [40–43]. In the present study, free vibration
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and buckling analysis of composite plate is examined by the
method of DSC. The given results are verified by comparison
against results available in the open literature. To the author’s
knowledge, this is the first instance in which the DSC method
has been adopted for free vibration and buckling analysis of
composite plates.

2. Discrete singular convolution

The DSC method is an efficient and useful approach for
the numerical solutions of differential equations. This method
was introduced by Wei [1] in 1999. Like some other numeri-
cal methods, the DSC method discretizes the spatial derivatives
and, therefore, reduces the given partial differential equations
into a standard eigenvalue problem. The mathematical founda-
tion of the DSC algorithm is the theory of distributions and
wavelet analysis. Wei and his co-workers first applied the DSC
algorithm to solve solid and fluid mechanics problems [10–14].
Zhao et al. [6,8,9] analyzed the high-frequency vibration of
structures using DSC algorithm. Civalek [44–46] gives numer-
ical solution of free vibration problem of rotating and lami-
nated conical shells, plates on elastic foundation. These studies
indicate that the DSC algorithm works very well for the vibra-
tion analysis of plates, especially for high-frequency analysis
of rectangular plates. More recently, Lim et al. [14,15] pre-
sented the DSC–Ritz method for the free vibration analysis of
Mindlin plates and thick shallow shells.

Consider a distribution, T and �(t) as an element of the space
of the test function. A singular convolution can be defined by [7]

F(t) = (T ∗ �)(t) =
∫ ∞

−∞
T (t − x)�(x) dx, (1)

where T (t − x) is a singular kernel. For example, singular
kernels of delta type

T (x) = �(n)(x) (n = 0, 1, 2, . . .). (2)

Kernel T (x) = �(x) is important for interpolation of surfaces
and curves, and T (x) = �(n)(x) for n > 1 are essential for nu-
merically solving differential equations. The Shannon’s kernel
is regularized as [8]

��,�(x − xk)

= sin[(�/�)(x − xk)]
(�/�)(x − xk)

exp

[
− (x − xk)

2

2�2

]
; � > 0, (3)

where � is the grid spacing. Eq. (3) can also be used to provide
discrete approximations to the singular convolution kernels of
the delta type [10]:

f (n)(x) ≈
M∑

k=−M

��(x − xk)f (xk), (4)

where ��(x − xk) = ���(x − xk) and superscript (n) denotes
the nth-order derivative, and 2M + 1 is the computational
bandwidth which is centered around x and is usually smaller
than the whole computational domain.

In the DSC method, the function f (x) and its derivatives with
respect to the x coordinate at a grid point xi are approximated
by a linear sum of discrete values f (xk) in a narrow bandwidth
[x − xM, x + xM ].

3. DSC method for irregular domains

3.1. Straight-sided quadrilateral plates

Consider an arbitrary straight-sided quadrilateral plate in the
Cartesian x.y plane, as shown in Fig. 1(a). The geometry of
this plate can be mapped into a rectangular plate in the natural
�.� plane, as shown in Fig. 1(b). By employing the following
transformation equations, the physical domain is mapped into
the computational domain:

x =
N∑

i=1

xi	i (�, �) (5)

and

y =
N∑

i=1

yi	i (�, �), (6)

where xi and yi are the coordinates of node i in the physical
domain, N is the number of grid points, and 	i (�, �); i =
1, 2, 3, . . . , N are the interpolation or shape functions. These
are given for node i:

	i (�, �) = 1
4 (1 + ��i )(1 + ��i ). (7)

Using the chain rule, the first-order, and second-order deriva-
tives of a function are given.{
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}
= [J11]−1
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}
, (8)
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(9)

where �i and �i are the coordinates of node i in the �.� plane,
and Jij are the elements of the Jacobian matrix. These are
expressed as follows:

[J11] =
[
x� y�
x� y�

]
, (10)

[J21] =
[

x�� y��
x�� y��
x�� y��

]
, (11)

[J22] =
⎡
⎢⎣

x2
� y2

� x�y�

x2
� y2

� x�y�

x�x� y�y�
1
2 (x�y� + x�y�)

⎤
⎥⎦ . (12)

The above transformations will be used later to transform the
governing differential equations and related boundary condi-
tions from the physical domain x.y into the computational do-
main �.�. Thus, an arbitrary-shaped quadrilateral plate may be
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