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Shape and topology optimization have flourished over the last two decades, resulting in a number of pow-
erful mathematical concepts. One such concept is that of topological sensitivity that quantifies the impact
of adding infinitesimal holes (within a given continuum) on specific quantities of interest such as compli-
ance, average stress, etc. In this paper we explore a novel generalization of topological sensitivity called
feature sensitivity that captures the first-order change in quantities of interest when an arbitrary internal
and boundary feature is created within an existing continuum. Specific algorithms are derived for com-
puting the feature sensitivity of linear elasticity problems, and illustrated through numerical experiments.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Engineering products are routinely designed and analyzed today
in a virtual CAD/CAE environment, with minimal reliance on expen-
sive prototyping. Engineering analysis methods such as the finite
element, boundary-element, finite-difference and finite volume
methods [1--5] have reached a high degree of reliability. In addition,
shape and topology optimization methods [6--8] are being used in
conjunction with the analysis methods, to maximize the perfor-
mance of designs, while satisfying typical engineering constraints.
Among the many mathematical concepts that underlie shape and
topology optimization [8--10], we review below two concepts par-
ticularly relevant to this paper.

Consider a 2-D geometry that is subject to certain external forces
and constraints as shown in Fig. 1. The boundary value problem can
be easily solved via (say) finite element analysis (FEM) [5]. Conse-
quently, one can compute various quantities of interest such as sys-
tem compliance, overall potential energy, average stress within a
region, etc.

The primary concept employed in shape optimization is that of
shape sensitivity that addresses the question on how these quanti-
ties of interest would change when the boundary is perturbed in-
finitesimally; see Fig. 2a. Various methods have been proposed for
computing shape sensitivity; see [9].

Topology optimization, on the other hand, can be achieved either
via a material approach or a geometric approach [6]. A particular
geometric approach, that is gaining popularity, is based on the notion
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of topological sensitivity. The latter complements shape sensitivity by
addressing the question on what would happen to the quantities of
interest if an infinitesimal hole is added to the domain; see Fig. 2b.
Note that since topological sensitivity depends on where the hole is
added, one obtains a topological sensitivity field defined everywhere
within the domain. Variousmethods have been proposed to compute
the topological sensitivity, for example, see [11--17]. Furthermore, it
has been demonstrated in [12] that the notion of topological sensi-
tivity can be extended to the boundary in that one can legitimately
find the sensitivity of placing holes on the boundary (without chang-
ing topology), making it a very attractive mathematical concept.

Now consider the following question: What would be the effect
on a quantity of interest when a finite-size region/feature of arbitrary
shape and size is subtracted from the design?1

The above question is of significant importance in mechanical
design for the following reasons:

1. Topological sensitivity, in theory, applies only to infinitesimal
holes, while, in practice, engineers are often interested in creating
finite-size modifications to existing designs. Thus, determining
the sensitivity of a design to finite feature deletions could be of
immense value to the designer.

2. In detail removal (a.k.a. defeaturing) one typically deletes 'small'
or 'irrelevant' features prior to simulation [18--20]. Quantifying
the effect of defeaturing on down-stream simulation is still an
open challenge, and is directly related to the posed question.

1 In this paper, 'feature' refers to any sub-set of the geometry, and may overlap
with the boundary; feature subtraction or feature deletion refers to the removal of
this sub-set from the base geometry.
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Fig. 1. A structural boundary value problem.

Fig. 2. (a) Shape sensitivity and (b) topological sensitivity.

3. Finally, recognizing that most modern CAD systems are feature-
based, the ability to directly measure the sensitivity of feature
subtraction during CAE analysis can greatly enhance CAD/CAE
coupling. Indeed, a recent NSF report [21] identifies 'lack of
CAD/CAE integration' as one of the most critical issues in product
development.
Towards addressing this question, we introduce the concept of

feature sensitivity that captures the first-order change in quantities
of interest when a cluster of small internal and boundary features of
arbitrary-shape is created within the geometry.

Feature sensitivity may be viewed as a generalization of the
topological sensitivity concept and can be computed via a robust
post-processing step, and can therefore be executed rapidly. The
numerical experiments rely on standard FEA [3--5] and boundary ele-
ment analysis (BEA) [1] for much of the underlying computation. The
methodology has been implemented within COMSOL [22], a com-
mercially available finite-element based CAD/CAE system. Further,
we show through numerical experiments that the proposed method
can be highly accurate.

2. Problem statement

Consider a 2-D base-design � in Fig. 3 over which we pose the
following standard linear elasticity problem [23]:

− ∇ · S0 = f in �
u0 = û on ��D

S0n= q on ��N (2.1)

where S0 = �C��u0

�u0 ≡ 1
2 (∇u0 + ∇uT

0)

where u0 is the displacement field, etc. [23]. We shall assume that
the above problem over the base-design in Fig. 3 has been solved,
via, say FEA.

Further, we shall assume that one has computed a generic quan-
tity of interest � defined per:

�0 =
∫
R

g(u0, ∇u0)d� (2.2)

where g is some non-linear function, defined over a region of interest
R ⊂ � − � (see Fig. 4).

Fig. 3. Base-design.

Fig. 4. Region of interest.

Fig. 5. Modified design.

2.1. Internal features

Now consider the topologically modified design in Fig. 5 where
a small internal feature has been inserted. To facilitate analysis, we
shall represent this geometry as �−�, where � is the small internal
feature.

We now pose a modified linear elasticity problem (analogous to
Eq. (2.1)):

− ∇ · S= f in � − �
u= û on ��D

Sn= q on ��N

Sn= 0 on �� (2.3)

where S= �C��u

�u ≡ 1
2 (∇u+ ∇uT)

Observe that zero Neumann conditions are imposed on the inserted
feature boundary; other boundary conditions can be handled as well.
As before, we also define a quantity of interest � (analogous to Eq.
(2.2)):

� =
∫
R

g(u, ∇u)d� (2.4)

The problem addressed in this paper may be summarized as follows:
Given the solutions to Eqs. (2.1) and (2.2), estimate � in Eq. (2.4)

without solving Eq. (2.3).

2.2. Boundary features

In the previous section we modified the topology by inserting
an internal feature. While internal features are fairly common in 2-
D, they are very rare in 3-D, i.e., most features in 3-D intersect the
boundary. For example, Fig. 6 illustrates a boundary feature. The
problem now is analogous to the one described above, i.e., we would
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