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The present contribution deals with the question how structures with softening material behavior can be
controlled in a numerical analysis beyond limit points, when conventional path following schemes fail.
For nonlinear problems with localized cracks, adaptive path following schemes that increase numerical
robustness, minimize user interference and avoid nonphysical (artificial) unloading are presented. In the
methods proposed, a control region is identified where control parameters are evaluated. This control
region adapts with the continuation of the crack tip. Robustness and applicability of the schemes are
illustrated by numerical examples.
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1. Introduction

The mechanical response of statically loaded structures until
failure is governed by external loads, prescribed deformations or
environmental effects, just to mention the most frequent ‘loading’
situations. Typically large structures are load controlled such as by
gravity and life load, whereas small structural elements within a
structure depend on the deformations of the neighbored structural
parts; if they are less stiff than the main structure their contribu-
tion to the overall load carrying capacity diminishes during further
loading of the entire structure. Depending on the controlling
parameter, i.e. load or displacement, the load carrying capacity
ceases at certain limit points leading to dynamic snap-through or
snap-back phenomena eventually leading to complete structural
failure.

These typical phenomena are reflected in related experiments.
Larger specimens may be loaded by increasing external loads.
However, structural elements are mostly controlled by selected
kinematic variables like characteristic displacements or strains;
examples are the elongation in a tension test or the crack opening
displacement (COD) control experiment; see for example van Mier
[1] for concrete. Other controlling mechanisms exist, e.g. pressure
or volume control for vessels.

The situation of selecting proper controlling parameters in
experiments as well as in numerical analyses is similar for geome-
trically and materially nonlinear response or its combination.
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However, for path dependent materials exhibiting damage or
plasticity it becomes much more delicate due to potential local
unloading. Although this is in certain cases a real physical phenom-
enon it may happen in conventional path following schemes like
the arc-length method as a nonphysical artifact.

The present contribution deals with the question how these
phenomena in the post-critical regime, i.e. beyond limit points,
can be controlled in a numerical analysis. We concentrate on the
determination of static equilibrium paths since they are a key to
predictability of these states. They contain information about
stability, imperfection sensitivity, ductility and robustness as well
as potential dynamic phenomena of the corresponding structure.
A variety of control types can be applied for tracing static non-
linear equilibrium paths. The choice of an appropriate constraint
equation for the incremental iterative scheme is crucial and affects
the convergence properties decisively. For nonlinear problems,
advanced procedures like the constant arc-length method have
been introduced by Riks [2] and Wempner [3]. Crisfield [4]
proposed a quadratic spherical or cylindrical constraint equation,
Ramm [5] presented the updated normal method, iterating on an
updated normal plane. Schweizerhof and Wriggers [6]| proposed a
consistent linearization of the constraint equation to circumvent
selecting the proper root for the quadratic problem. Over the last
few decades, these methods have been applied for geometrically,
as well as for materially nonlinear problems. Several modifications
have been introduced in the mean time, see e.g. Wriggers [7] or
Geers [8], and also have been implemented in commercial codes.

Most of these schemes can handle smooth geometrically nonlinear
problems fairly well, but still have problems for path dependent
material, in particular in the post-critical range. In this case strain
localization and artificial unloading introduce additional challenges,
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these methods cannot always handle. It is known from the literature
that global norms, appearing in the methods mentioned above,
are inappropriate for many materially nonlinear problems. Geometric
nonlinearity is taken into account in the numerical examples. How-
ever, particular aspects of geometric nonlinearity, like buckling,
bifurcation and instabilities, are not in the focus of this paper. Dealing
with this class of problems, de Borst [9] presented the indirect
displacement control, for example using the crack mouth opening
displacement as a controlling parameter. This method offers a robust
solution technique, but requires a priori knowledge of the structural
behavior in order to assign the controlling degrees of freedom before
computation. Chen and Schreyer [10] prescribe selected strain com-
ponents in the most critical point of the body. This total strain control
necessitates continuously growing strains to gain monotonic behavior
of the constraint equation. Unloading of the maximally strained
element may lead to an algorithmic failure. As a generalization of
these approaches Geers [8,11] proposes an adaptive scheme, the
subplane control approach, that uses incremental predictor solutions
to select or weigh control parameters for the subsequent iteration
procedure. His approach, prescribing incremental changes instead of
total values, does not require continuously growing control quantities.
Rots et al. [12] introduce a sequentially linear analysis for concrete and
masonry structures and apply a secant approximation replacing the
softening branch by a saw-tooth approximation. In the proposal of
Lorentz and Badel [13], the choice of the scalar constraint equation is
based on the maximum value of the elastic predictor of the yield
function. Another proposal of [13] is a normalized prescribed strain at
the Gauss point exhibiting the maximum strain increment. Gutiérrez'
energy release control [14] is a dissipation based arc-length control.
In [15] it is extended to geometrically nonlinear damage and geome-
trically linear plasiticity. This method is well suited for dissipative parts
of the path as the rate of dissipation is positive. For problems that
exhibit elastic loading during the continuation of the equilibrium path,
the constraint equation needs to be switched to a different control
type which does not rely on dissipation. The energy release control is
an elegant and consistent method. The authors hoped to get smooth
transient regions of dissipative and elastic path sections by controlling
a quantity implying elastic and dissipative changes. Furthermore, these
transient areas should be overcome with a small number of load steps.

It can be stated that several situations exist where the control
equation may fail, for example at limit points or sharp snap-backs.
Furthermore, artificial unloading can occur for path dependent
material.

1.1. Objective

For the present study the typical localized failure mechanism of
an evolving individual crack based on a continuum damage model
with softening is selected as a benchmark for a path following
scheme. Additionally, one example without prescribed damage
zone is used as a test example for the methods presented.

Without loss of generality, isotropic damage with linear soft-
ening is selected; an element related fracture energy based
regularization is applied. Geometrical nonlinearities are taken into
account.

After the basic equations for the path following schemes are
summarized, the mentioned issue of artificial unloading is picked
out as a central theme. In view of the mentioned complex of
problems we concentrate on adaptive schemes that increase
numerical robustness, minimize user interference and avoid
nonphysical (artificial) unloading. Since the adaptive arc-length
method either in the complete or selected displacement version
cannot avoid artificial unloading the concept of an Adaptive Strain
Control (ASC) is pursued. For this a control region in the most
active process zone monitoring the damage related equivalent
strain is picked. This leads to the selection of a control parameter

which constitutes the constraint equation. By this artificial unload-
ing can be avoided. This is underlined by several numerical
examples.

2. Basic equations
2.1. Path following scheme

For the nonlinear problems studied in this paper proportional
loading with a load factor A is assumed. The problem contains n
unknown degrees of freedom. Thus, the number of unknowns in a
static incremental iterative scheme amounts to n+1: n degrees
of freedom D and a load factor A. Therefore in addition to the n
equations equilibrating the internal and external forces F;,; and
Fext, respectively

R= Fint(D> /1) - Fext(Ds ﬂ) =0 (‘1)

a scalar constraint equation is required. In the following it will also
be referred to as the control equation

f=c—¢c=0 )

Each incremental step allows choosing a new constraint equation.
Thus, for m steps, up to m constraint equations are used during
computation. The constraint or control equation filters equilibrium
points out of the infinite number of equilibrium points of an
equilibrium path. The points displayed satisfy prescribed selection
criteria. Displacement control, for instance, f = AD.— AD, selects
points in a fixed distance and direction from the current equili-
brium point with the prescribed displacement AD. f =Al—AA
represents a constraint equation that increments the load factor A.
A popular control function is the arc-length control, f = As— AS.
The arc-length s is not a physical but a purely numerical quantity,
which may be geometrically interpreted as the arc-length of the
equilibrium path.

In the control procedures presented in this paper, the predictor
in the first increment is the scaled tangent to the nonlinear
problem. In the remaining steps, the secant from the previous to
the current equilibrium point is used as a predictor for the next
step. Thus, the constraint equation is satisfied in every predictor
step. A Newton-Raphson scheme is applied for corrector itera-
tions. Equilibrium equations and the constraint equation are
linearized as proposed by Schweizerhof and Wriggers [6].

In the following, incremental changes will be marked with A,
iterative changes will be described with §. Note that J is not meant
to indicate variations in this paper:
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The derivative of f with respect to load factor A is
of /oA = of /oD - oD/dA. i is the iteration index. Note that a derivative
with respect to absolute values is exactly the same as deriving
with respect to incremental changes. For prescribed displace-
ments, e.g. for a permanent settlement, the displacements D
depend on A, then playing the role of an incrementation factor.
In matrix representation

Kr R, R
[f,.) fa f

where Kr = 0R/oD represents the tangent stiffness matrix, it can
be noticed that a nonsymmetric system has to be solved. This may
be avoided by applying the two step solution analogous to a
procedure advocated by Crisfield [4] and Ramm [5], a technique
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