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a b s t r a c t

This paper deals with the treatment of incompressibility in solid mechanics in finite-strain elastoplas-
ticity. A finite-strain model proposed by Miehe, Apel and Lambrecht, which is based on a logarithmic
strain measure and its work-conjugate stress tensor is chosen. Its main interest is that it allows for the
adoption of standard constitutive models established in a small-strain framework. This model is
extended to take into account the plastic incompressibility constraint intrinsically. In that purpose, an
extension of this model to a three-field mixed finite element formulation is proposed, involving
displacements, a strain variable and pressure as nodal variables with respect to standard finite element.
Numerical examples of finite-strain problems are presented to assess the performance of the formula-
tion. To conclude, an industrial case for which the classical under-integrated elements fail is considered.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the past three decades, the development of finite element
formulations capable of modeling large elastoplastic strains has
received considerable attention. The earliest formulations, intro-
duced in the 1970s, were rate-type formulations based on a
hypoelastic stress–strain relationship [1–3]. The main drawback of
this kind of formulations is that they introduce elastic dissipation.
Despite that, they are still commonly used today. In the 1980s, Simo
and co-workers [4–7] introduced a formulation based on hyper-
elastic constitutive formulations that does not exhibit elastic
dissipation. Many researchers, such as Eterovic and Bathe [8] or
Weber and Anand [9], developed some formulations that use a
hyperelastic constitutive model based on the logarithmic strain
tensor, also called the Hencky tensor. In these works, an additive
decomposition of the elastic and plastic strains in the absence of
rotations is assumed, which is a typical feature of the geometrically
linear theory of plasticity. This provides a natural basis for a
material-independent extension of constitutive structures from
the geometrically linear to the nonlinear theory at finite-strain.
More recently, Miehe et al. [10] developed a formulation for which
the kinematic setting consists of a constitutive model in the
logarithmic strain space that is preceded and followed by purely

geometric processing. In such a way, the relationship between the
large-strain and the small-strain setting is defined by purely
geometric transformations. When modeling finite-strain elastoplas-
tic processes by the finite element method, it is important to
consider the nearly incompressible plastic behavior, which is typical
of metals, for instance. It is well-known that the standard
displacement-based finite element formulation performs poorly in
quasi-incompressible situations, producing stiff solutions and oscil-
lations of the stress field. Over the years, and particularly in the
1990s, different strategies were proposed to reduce or avoid
volumetric locking and pressure oscillations in finite element
solutions. Several methods to deal with incompressibility have
been developed, such as under-integrated elements [11], Enhanced
Assumed Strain (EAS) methods [12–14], B-bar and F-bar methods
[15,16], or mixed formulations [17,18]. The mixed finite element
method is robust and generic and it is a popular and efficient way to
deal with incompressibility. Mixed elements for finite strains were
first introduced by Simo et al. [19] and have been since developed
by many authors [20,21]. In non-linear solid mechanics, the use of a
two-field formulation is not convenient for many constitutive
models [20,22]. For example when the plasticity criterion depends
on the hydrostatic stress like in Rousselier or GTN laws [23,24],
a two-field formulation based on displacement and pressure is not
straightforward and differ from the chosen law. For this kind of
laws, the use of a three-field formulation in which the unknowns
are the displacement, the pressure and the volumetric strain fields,
allows us to have a generic method. Furthermore, in the finite-

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/finel

Finite Elements in Analysis and Design

http://dx.doi.org/10.1016/j.finel.2014.04.004
0168-874X/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ33 6 11 98 75 89.
E-mail address: alakhrass@emse.fr (D. Al Akhrass).

Finite Elements in Analysis and Design 86 (2014) 61–70

www.sciencedirect.com/science/journal/0168874X
www.elsevier.com/locate/finel
http://dx.doi.org/10.1016/j.finel.2014.04.004
http://dx.doi.org/10.1016/j.finel.2014.04.004
http://dx.doi.org/10.1016/j.finel.2014.04.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2014.04.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2014.04.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2014.04.004&domain=pdf
mailto:alakhrass@emse.fr
http://dx.doi.org/10.1016/j.finel.2014.04.004


strain framework, it is important to express these formulations in a
way that makes the implementation of the constitutive laws simple.
That is why the idea in this work is to adopt the model of Miehe
et al. [10], and to adapt it to a three-field formulation.

This paper presents a robust non-linear mixed finite element
procedure for the numerical analysis of finite-strain elastoplasti-
city, where the use of specific elements is considered to deal with
plastic incompressibility. The Miehe's model, based on a logarith-
mic description of the strain tensor, is exposed in Section 2.
A three-field mixed finite element formulation is then presented
in Section 3. The extension of the finite-strain model to this three-
field formulation is described in Section 4. Finally, some numerical
simulations are presented in Section 5. The efficiency of the
developed model is first shown through numerical tests. A case
of industrial interest, for which under-integration technique fails,
is then considered in order to assert the robustness of the
presented approach.

2. Description of the finite-strain model

In order to describe the finite-strain framework, a hyperelastic-
based model developed by Miehe, Apel and Lambrecht is con-
sidered [10,25]. The kinematic framework consists of a constitutive
model in the logarithmic strain space that is framed by purely
geometric pre-processing and post-processing steps. This numer-
ical approach of the material response computation can be split
into three steps: a geometric pre-processing step in which the
logarithmic strain tensor is defined, a second step to get its work-
conjugate stresses computed from the constitutive model, and a
third one to get back to classical tensors using geometric post-
processing. Note that in the present work, Lagrangian tensors are
considered.

2.1. Geometric pre-processing

This step consists in defining the logarithmic strain tensor, and
the geometric transformations necessary to get it along with its
associated stress tensor, from standard tensors. The logarithmic
strain tensor E is defined by

E¼ 1
2

lnðCÞ ð1Þ

with C the right Cauchy–Green strain tensor,

C ¼ FTF ð2Þ

where F is the deformation gradient tensor defined as the relative
deformation of the medium from its initial state (position X) to its
current state (position x)

Fij ¼
∂xi
∂Xj

ð3Þ

Following Miehe's approach [10], an additive decomposition of the
logarithmic strain is considered

E¼ EeþEp ð4Þ

where Ee is referred as the elastic strain, and Ep as the plastic strain.
It has been shown in Refs. [10,25,26] that this additive decomposi-
tion provides results close to those obtained by assuming Lee's
multiplicative decomposition of the deformation gradient [27].

Ep is assumed to be a function of the plastic metric tensors
Gp [26] defined by

Gp ¼ FpTFp ð5Þ

and can be expressed as

Ep ¼ 1
2

lnðGpÞ ð6Þ

Thus, the logarithmic strain tensor allows us to switch from
multiplicative properties for the elastoplasticity in finite strain to
the additive structure of the small strain theory. Furthermore, the
plastic Jacobian denoted Jp is such that

Jp≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGpÞ

q
¼ exp½trðEpÞ� ð7Þ

which gives

trðEpÞ ¼ lnðJpÞ ð8Þ

Thus, it can be written that

detðGpÞ ¼ 13trðEpÞ ¼ 0 ð9Þ

Indeed, the multiplicative constraint on the determinant of the
plastic metric is described by the additive constraint on the trace
of the logarithmic plastic strain.

The model is based on the logarithmic strain tensor (1) and its
work-conjugate stress tensor denoted T . In order to get the
expression of T , in terms of standard tensors, the expended power
is expressed as a function of the second Piola–Kirchhoff stress
tensor S and the right Cauchy–Green strain tensor C

PðtÞ ¼ SðtÞ : 1
2
_C ðtÞ ð10Þ

with

_C ðtÞ ¼ ∂C
∂t

ð11Þ

and as a function of E and T

PðtÞ ¼ T ðtÞ : _EðtÞ ð12Þ

so that T can be expressed as [10]

T ¼ S : P�1
L ð13Þ

with

PL ¼ 2
∂E
∂C

ð14Þ

Thus, geometric relationships between the logarithmic strain
tensor E and its work-conjugate stress tensor T with respectively,
the right Cauchy–Green strain tensor, and the second Piola–
Kirchhoff stress tensor, have been established.

2.2. Constitutive model in the logarithmic strain space

Let us assume a constitutive model of plasticity that is written
in the logarithmic strain space. From the logarithmic strain tensor
E and the logarithmic plastic strain tensor Ep, calculated respec-
tively by (1) and (6), and some hardening variables denoted α, the
constitutive model provides the stress tensor T and the associated
elastoplastic tangent modulus Eep

fE;Ep;αg ) Constitutive model ) fT ; Eepg ð15Þ

The tangent modulus yields the rate of the stress T with respect to
the rate of the logarithmic strain

_T ¼ Eep : _E ð16Þ

Note that, in the logarithmic strain space, the constitutive model
has the same structure as models for small-strain plasticity. It is
hence possible to adopt simply, for finite-strain elastoplasticity,
the frame of constitutive models from the small-strain theory.
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