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This paper presents an efficient formulation of the problem of wave propagation along the length of
axisymmetric pipes under non-axisymmetric loading such as leaks or new cracks so that wave
characteristics in a pipe can be identified without the excessive computational time associated with
most current 3D modeling techniques. The axisymmetric geometry of the pipe is simplified by reducing
the problem to 2D while the non-axisymmetric loading is represented by the summation of Fourier
series. Since the pipe stiffness matrix as conventionally formulated represents the greatest single
computational load, the strain-displacement matrix is partitioned in such a way that numerical
integration components are decoupled from 6 (the angular parameter) and n (the number of Fourier
terms). A single numerical integration of the strain—displacement matrix is performed and utilized for all
the iterations of Fourier terms to represent the non-axisymmetric load. The numerical formulation is
conducted using spectral elements, which also reduce computational time since these elements yield a
diagonal mass matrix. The computational efficiency of the developed method is compared with

conventional finite element tools.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The main wave propagation based Structural Health Monitoring
(SHM) methods for pipelines are guided wave ultrasonics and
acoustic emission. Guided wave ultrasonics relies on capturing the
reflected wave energy from a defect after introducing a perturba-
tion signal using ultrasonic transducers [1,2]. If less-dispersive
guided modes are selected to transmit and receive the signal,
long-range pipes can be monitored using a limited set of transdu-
cers. The acoustic emission (AE) method relies on propagating
elastic waves emitted from newly formed damage surfaces such
as active cracks and leaks. Crack growth causes sudden stress—strain
change in its vicinity, which generates a wideband step function. A
leak causes turbulence at its location, which generates continuous
emissions. The AE method may be based on elastic waves propagat-
ing through the pipe material [3,4] or acoustic waves propagating
through the material inside the pipe [5]. For an effective and
accurate monitoring approach, wave characteristics such as the
dispersion curves under buried or fluid filled conditions and the
attenuation profile should be known prior to the implementation of
an SHM method. However, experimental simulations of different
pipe geometries and conditions are generally not possible. Wave
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propagation in pipes is a complex phenomenon due to the excita-
tion of multi-mode waves, which must be superimposed to provide
an overall solution. Analytical solutions of governing differential
equations are not applicable when the pipe geometry becomes
complex with the presence of defects, coatings and internal
materials [6,7], buried conditions [8], and pipe bends [9]. The
modeling of wave propagation is important for quantitative under-
standing of damage mechanics and the identification of the
SHM system characteristics (e.g. frequency selection, sensor posi-
tion [10]).

Wave propagation in pipes can be numerically modeled as 2D
or 3D [11]. The 3D wave propagation problems of hollow circular
cylinders including non-axisymmetric wave modes are formulated
by Gazis [12]. If the problem requires modeling high frequency
waves in a large-scale structure, the 3D model becomes compu-
tationally expensive. Therefore, it is imperative to reduce the
mathematical problem to 2D or implement semi-analytical finite
element formulation [13,14] for reducing the computational load.
When the structure and loading are axisymmetric, the structural
model can be reduced to a 2D problem as displacements and
stresses are independent of ¢ (the angular parameter). There are
several other methods for reducing the computational time of high
frequency wave propagation in hollow structures. Benmeddour
et al. [15] developed a three dimensional hybrid method which
combined a classical FE method and normal mode expansion
technique in order to study the interaction of guided waves with
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non-axisymmetric cracks in cylinders. Zhou et al. [16] utilized the
numerical eigenmode extraction method applicable to wave pro-
pagation in periodic structures. Mazzotti et al. [17] applied a Semi
Analytical Finite Element (SAFE) method to study the influence of
prestressing load on the dispersion of viscoelastic pressurized
pipe. Bai et al. [14] constructed an elastodynamic steady-state
Green's function based on modal data determined from the
spectral decomposition of a circular laminated piezoelectric cylin-
der using semi-analytical finite element formulation. Zhuang et al.
[13] proposed integral transform and forced vibration as two
different methods both based on the same set of eigenvalue data
to construct a steady-state Green's function for laminated circular
cylinder. Gsell et al. [18] discretized the displacement equations
directly using the finite difference method, which reduced the
computational time by 25%.

When the structure is axisymmetric and the load is non-
axisymmetric, three displacement components in the radial, axial
and circumferential directions exist [19,20]. To utilize the 2D
axisymmetric geometry of the pipe, the non-axisymmetric load
can be expanded using Fourier series, and the structural response
can be computed by superposing the solutions of each Fourier
term [21,22]. There are several examples in the literature related
to applying Fourier series summation to model axisymmetric
geometries with non-axisymmetric loading such as Zhuang et al.
[13], Bai et al. [14],Wunderlich et al. [23] and Bouzid et al. [24].
However, in case where the Fourier expansion of the load function
requires many harmonics to represent the non-axisymmetric
loads such as concentrated loads, the 2D superposition method
combined with conventional finite element formulation may not
be computationally efficient than 3D analyses [25,26]. Bathe [25]
describes that the stiffness matrices corresponding to the different
harmonics can be decoupled due to the orthogonal properties of
trigonometric functions. However, to the best of our knowledge,
there is no study that explicitly presents the mathematical
formulation. While numerical models are capable of simulating
various pipe geometries and conditions to deduce the waveform
characteristics, existing numerical formulations for wave propaga-
tion are computationally expensive, and not practical for modeling
long-range pipes.

In this paper, a detailed mathematical formulation is presented to
model axisymmetric geometries with non-axisymmetric dynamic
loads, specifically concentrated loads. The formulation is based on
partitioning the strain-displacement matrix in such a way that the
numerical integration terms are decoupled from the variables ¢ and n
(the number of Fourier terms). Therefore, the strain—displacement
matrix is calculated only once and used for each Fourier term
calculation. Additionally, the numerical formulation is built using
spectral elements, which are special forms of finite elements that

Fig. 1. Lagrangian 2D shape function using GLL integration points for the coordi-
nate of (0.87, 0.87).

yield a diagonal mass matrix and thereby provide highly efficient
numerical models for high frequency wave propagation [27,28,29].
The nodal coordinates of the Lagrange shape functions are obtained
from the solutions of orthogonal polynomials. Moreover, one could
optimize the computational expenditure by expanding the displace-
ment field in the pipe over a series of normal modes.

The organization of this article is as follows: the discretization,
spectral element formulation and the non-axisymmetric loading
formulation are described in Section 2. In Section 3, the 2D
numerical results are compared with 3D finite element models.
The computational efficiency of the 2D model is presented in
Section 4. Finally, the major outcome of this study and future work
are summarized in Section 5.

2. Method of analysis
2.1. Discretization

For the spectral element formulation, the discrete locations of
the nodal coordinates are defined by the Gauss-Lobatto-Legendre
(GLL) points using the selected Legendre polynomial degree,
which defines the p refinement within the element. The GLL
points are calculated by the roots of the following equation [30]:
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where Py(¢) is the Legendre polynomial of degree N and ée[—1,
1]. The basis function N (=0,...,number of node) in 2D is
expressed using the Lagrange interpolation polynomials [31]
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where ¢ and 5 are the natural coordinate systems in the element
and & and 7; are the coordinates of the ith and jth node in the
directions of ¢ and 7, respectively. Fig. 1 shows the Lagrangian
shape function using GLL integration points for (&y). The non-
uniform distribution of nodal points reduces the presence of
Runge phenomenon [32].

2.2. Coordinate system and corresponding displacement fields

The cylindrical coordinates and the axis of revolution for pipe
geometry are shown in Fig. 2(a). The axial, radial and circumfer-
ential displacements are defined as w, u and v, respectively.
The spectral element discretization of a cross sectional element
using the 5th order Legendre polynomial is shown in Fig. 2b. The
axis of revolution is z with the displacement component w.

In general, when loading has no symmetry and is defined by
Fourier series components, the displacement components at radial
(u, axial (w and circumferential (v) directions can be defined in the
form of Fourier expansion as [24]

u= Y (u, cos nd+1u, sin no) 3)
n=1

v= Y (V, sin nd—Vv, cos no) 4)
n=1

w= Y (W, cos nd+wy, sin ne) 5)
n=1

where n is the harmonic number. Single and double barred terms
represent the symmetric and antisymmetric displacement ampli-
tudes with respect to the plane =0 [24].

If the applied load is symmetric about the plane =0 and
n=123..., the terms of the single-barred series represent the
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