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a b s t r a c t

A nonlinear beam formulation is developed that is suitable to describe adhesion and debonding of thin
films. The formulation is based on a shear-flexible, geometrically exact beam theory that allows for large
beam deformations. The theory incorporates several aspects that have not been considered in previous
theories before. Two different adhesion mechanisms are considered here: adhesion by body forces and
adhesion by surface tractions. Corresponding examples are van der Waals adhesion and cohesive zone
models. Both mechanisms induce a bending moment within the beam that can play an important role in
adhesion and debonding of thin films. The new beam model is discretized within a nonlinear finite
element formulation. It is shown that the new formulation leads to a symmetric stiffness matrix for both
adhesion mechanisms. The new formulation is used to study the peeling behavior of a gecko spatula. It is
shown that the beam model is capable of capturing the main features of spatula peeling accurately,
while being much more efficient than 3D solid models.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The adhesion, debonding, and peeling behavior of thin strips
and films plays an important role in many applications. Examples
are paints and coatings, adhesive tapes, liquid films, and adhesive
pads of insects and lizards like the gecko spatula pad. Since thin
strips are slender, often also elongated, structures they are natural
candidates for the consideration of beam theory. This is the basis
of several analytical thin film peeling models that have been
formulated starting with the seminal work of Kendall [1], see for
example [2–5]. Analytical models are based on simplified assump-
tions regarding geometry and deformation. Thus they are not
suitable to describe general problems characterized by the non-
linearities of large deformations and by complex geometries, as
they are found in adhesive systems of insects and lizards. In these
cases computational models are indispensable.

The objective of this paper, therefore, is to formulate a computa-
tional beam model for adhesion, debonding, and peeling. Here, we
focus on a 2D formulation that is suitable to describe plane strain
conditions of films, or to describe 2D behavior of beams. The
considered formulation is based on the nonlinear, geometrically
exact beam theory of Reissner [6], of which a computational counter-
part is discussed in a book by Wriggers [7]. This formulation is
generalized to beams with an initially curved axis and an arbitrary

shaped cross section, which may vary along the beam. This is also
accounted for in the presented contact formulation. The beam model
is extended by two different adhesion formulations: adhesion by
body forces and adhesion by surface tractions. The first is suitable to
describe van der Waals adhesion, the second is suitable to include
cohesive zone models. The formulation presented here is an exten-
sion of the van der Waals-based beam adhesion formulation of Sauer
[8]. The new formulation accounts for both the shear deformation of
the beam and a bending moment that is caused by the adhesion
forces. Both these contributions have not been incorporated into a
computational beam model before. It is seen that, combined, the two
contributions lead to a symmetric finite element stiffness matrix. The
symmetry is lost if one of the contributions is neglected. This
symmetry reflects the fact that the model can be derived from a
potential. The computational model presented here has been applied
by Sauer [9] for studying the peeling behavior of shear-rigid beams
with a rectangular cross section. The purpose of that study was to
investigate the material and adhesion properties of thin peeling
films, and to show that the bending stiffness can play a major role
during peeling. It did, however, neither discuss the computational
modeling nor the extension to shear-flexible beams with arbitrary,
varying cross sections. This is the purpose of the present work.

The major advantage of the new formulation is the huge gain in
efficiency it offers compared to adhesion models for 3D solids, like
the model of Sauer and Wriggers [10]. To illustrate this, we
compare the new beam formulation with the detailed 3D spatula
model of Sauer and Holl [11], considering a vibration analysis and
several peeling cases. It is seen that the beam model is capable of
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capturing the behavior of the spatula accurately. For the study, the
characteristic beam properties (centroid, cross section, second
moment of area, etc.) need to be determined from the detailed
3D geometry, which is discussed in detail. Since a van der Waals-
based adhesion model leads to a purely normal (i.e. mode I)
contact formulation, we also study gecko adhesion by considering
a cohesive zone formulation that can describe tangential (mode II)
debonding. In summary, it is shown that the new formulation is
(1) more accurate than previous beam formulations, (2) consistent
with continuum theory, and (3) a highly efficient alternative to 3D
solid models.

The remaining sections of this paper are structured as follows.
Section 2 gives an overview of the geometrically exact beam
theory and shows how various adhesion formulations are adapted
to the beam. Section 3 then presents the corresponding finite
element formulation for adhesive beams. Numerical examples are
discussed in Section 4. These consider the peeling behavior of a
gecko spatula for various loading conditions and compare the
beam results with detailed 3D computations based on solid
elements. Section 5 concludes this paper.

2. Geometrically exact beam theory

This section presents the model equations governing the
mechanical behavior of a thin adhesive strip. We discuss two
different continuum adhesion models and their adaption to beam
theory, focusing first on the internal work, δΠint, and then on the
virtual contact work, δΠc.

2.1. Equilibrium equation

For adhesion, the (mechanical) weak form of the equilibrium
equation is given by the following statement [10]: find an admissible
deformation φAU satisfying the principle of virtual work

δΠintþδΠc�δΠext ¼ 0; 8δφAVφ; ð1Þ
where δφAVφ denotes a kinematically admissible virtual deforma-
tion. The first term, δΠint, corresponds to the virtual work of the
internal forces, see the following section. The second term, δΠc,
which is discussed in Section 2.3, denotes the virtual work of contact
and adhesion forces. The last term, δΠext, denotes the virtual work of
any external forces acting on the strip.

2.2. Kinematics and constitution

In the following, we outline the kinematics and constitution of
the geometrically exact beam formulation of Reissner [6], see also
[7]. This formulation accounts for the exact kinematics of large
beam deformations and rotations. According to the assumptions of
beam theory, only normal strains, due to axial forces and bending
moments, and shear strains, due to shear forces, are considered.
This means that the beam is supposed to be shear-flexible (like the
Timoshenko beam). Further, the cross section of the beam is
supposed to remain planar (but not necessarily normal to the
beam axis) during deformation. Fig. 1 shows the nonlinear kine-
matics of the deforming beam. As shown, the beam axis is
described by the coordinate S in the undeformed reference
configuration, B0. The deformation of the beam is fully character-
ized by the three independent fields u(S), w(S), and ψðSÞ, which
denote the displacement of the beam axis and the rotation of the
cross section (Fig. 1). The fields can be arranged in the vector

d¼
u

w

ψ

2
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3
75: ð2Þ

The deformation of the beam is then characterized by

x¼
x

y

θ
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75¼ Xþd: ð3Þ

This formulation corresponds to the global coordinate system
shown in Fig. 1. The angle Θ corresponds to the initial inclination
of the cross section, which may vary along S but must be
perpendicular to the beam axis in the undeformed configuration.
This follows from the theory of Reissner. Introducing the rotation

Q ðθÞ ¼
cos θ sin θ 0
� sin θ cos θ 0

0 0 1

2
64

3
75; ð4Þ

the displacement vector, d, can be transformed to the local
coordinate systems of the reference configuration, B0, and the
current configuration, B, as
dLoc≔Q ðΘÞd and dloc≔Q ðθÞd: ð5Þ

Note that Q ðθÞ ¼Q ðψÞQ ðΘÞ. For the sake of simplicity, we define a
vector of partial derivatives, d0≔∂d=∂S. Introducing the transfor-
mations

d0
Loc≔Q ðΘÞd0 and d0

loc≔Q ðθÞd0; ð6Þ

the axial strain, ε, the shear strain, γ, and the flexure, κ, of the beam,
arranged in the vector ε¼ ½ε; γ; κ�T , can be either written as [7]

ε¼Q ðψÞd0
Loc�ϕ ð7Þ

or equivalently as

ε¼ d0
loc�ϕ; ð8Þ

where ϕ is defined as

ϕ¼
1� cos ψ

sin ψ

0

2
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3
75: ð9Þ

Expression (8) provides a geometrically exact definition of the beam
strains w.r.t. the local coordinate system. The strain definition
according to Eq. (8) is the logical extension of the infinitesimal beam
kinematics to large deformations and rotations.

The local axial force, N, shear force, V, and bending moment, M,
of the beam follow from the chosen constitutive model. Here, we
consider linear elastic material behavior, so the cross-sectional
force S ¼ ½N;V ;M�T is given by

S ¼Dε ð10Þ

Fig. 1. Nonlinear kinematics of the geometrically exact beam.
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