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Abstract

The behavior of buckling of laminated composite circular plates having circular holes and subjected to uniform radial load is investigated
by using the finite element method. A finite element analysis program was developed to analyze static stability. Eight node isoparametric
shell elements with 24 degrees of freedom are used during the investigation. The first-order shear deformation theory is used to consider the
effects of the transverse shear deformation. The effects of hole sizes, location of the holes, thickness variations and boundary conditions on
the buckling load of the composite plates are determined.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Composite laminated plates are being increasingly used in
modern engineering applications, due to their high strength-
to-weight, stiffness-to-weight ratios and modulus [1–3]. The
high specific strength and specific stiffness which are the bases
of the superior structural performance of composite materi-
als provide the composite materials many application choices.
For moving parts, weight plays an important role in calculat-
ing the structural stability of the system. The fiber reinforced
laminated composite plates with holes are used especially in
weight-sensitive structures. Weight reduction is intended by
hole opening and fuel, hydraulic and electrical lines can be
placed through these holes. However, in such applications,
buckling phenomenon may often be observed. Buckling is crit-
ical to structural components made of composite materials be-
cause the buckling of composite plates usually occurs at low
applied loads compared to in-plane tensile loading and gener-
ates large deformation due to the small thickness/length ratio.
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Therefore, in design of these types of structures, static sta-
bility of laminated composite plates which are in general
the main load carrying component of the system has to be
analyzed.

The study of buckling of composite plates has been consid-
ered by some researchers. Sai Ram and Streedbar Babu [4] in-
vestigated the buckling of laminated composite shells subjected
to transverse load. Kumar et al. [5] studied the tensile buckling,
vibration and parametric instability behavior of doubly curved
panels with central circular cutout subjected to uniaxial in-
plane partially distributed tensile edge loadings using the finite
element method. They used first-order shear deformation the-
ory (FSDT) to model the curved panels, to consider the effects
of the transverse shear deformation and rotary inertia. Akhras
and Li [6] developed a spline finite strip method for static and
free vibration analysis of composite plates using Reddy’s high-
order shear deformation theory. Shufrin and Eisenberger [7]
presented analysis of the buckling loads for thick elastic rectan-
gular plates with variable thickness and various combinations
of boundary conditions. They applied both the first-order and
high-order shear deformation plate theories to the plate’s anal-
ysis. Huang and Shukla [8] obtained post-buckling behavior
of cross-ply laminated composite plate containing randomly
oriented short spatial fibers in each layer analytically, using
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fast converging double Chebyshev series. The mathemati-
cal formulation is based on FSDT and von-Karman non-
linearity. Xie et al. [9] proposed the buckling analysis of
symmetrically laminated composite plates withth internal
supports.

This paper intends to point out the effects of hole sizes, loca-
tion of the holes on the buckling load of laminated composite
circular plates.

2. Theoretical formulations

2.1. Strain–displacement relationships in cylindrical
coordinates

In general, cylindrical coordinates (r, �, z) (Fig. 1) are
preferred over Cartesian coordinates (x, y, z) where a de-
gree of axial symmetry exists both in geometry and loading.
The laminate strains in cylindrical coordinates are of general
form,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�r

��

��z

�rz

�r�

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u0

�r

1

r

�v0

��

1

r

�w0

��
+ ��

�w0

�r
+ �r

1

r

�u0

��
+ �v0

�r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ z

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��r

�r

1

r

���

��

0

0
1

r

��r

��
+ ���

�r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (1)

where u0, v0 and w0 are midplane displacements in the r, � and
z directions and �r , �� are the rotations of transverse normal
about the r and � axes, respectively.

2.2. Laminate constitutive equations

The laminate constitutive equations relate the force and mo-
ment resultants (N, M) to the midplane strains and curvatures
(ε(0), ε(1)). The force resultants are given by
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and the moment resultants are given
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where Aij denote the extensional stiffnesses, Dij the bend-
ing stiffnesses, and Bij the bending–extensional coupling stiff-
nesses of a laminate and they can be calculated as
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where Q
(k)
ij are the material stiffness terms of the kth lamina, as

referred to the laminate coordinates and N is the total number of
layers in the laminate, and (hk, hk+1) are thickness coordinates
of the bottom and top of kth layer (Fig. 2).

2.3. Equations of motion

The equations of motion of a solid body can be derived using
either energy principles or vector mechanics. Energy principle
has been used during this investigation. For the static case, the
equilibrium equations of the FSDT are
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where (Nr, N�, Nr�) and (Mr, M�, Mr�) are force and moment
resultants defined in Eq. (2), qr is the distributed radial force
acting on disc, qt is the distributed transverse force acting on
disc and the quantities (Qr, Q�) are called the transverse shear
forces.
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