Accepted Manuscript

Title: Electrochemical and anticorrosion properties of 5-hydroxytryptophan on mild steel in simulated well acidizing fluid

Authors: Ekemini Ituen, Onyewuchi Akaranta, Abosede James

PII: \$1658-3655(17)30008-0

DOI: http://dx.doi.org/doi:10.1016/j.jtusci.2017.01.005

Reference: JTUSCI 353

To appear in:

Received date: 19-9-2016 Revised date: 12-12-2016 Accepted date: 3-1-2017

Please cite this article as: Ekemini Ituen, Onyewuchi Akaranta, Abosede James, Electrochemical and anticorrosion properties of 5-hydroxytryptophan on mild steel in simulated well acidizing fluid, http://dx.doi.org/10.1016/j.jtusci.2017.01.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electrochemical and anticorrosion properties of 5-hydroxytryptophan on mild steel in simulated well acidizing fluid

Ekemini Ituen^{1,2*} Onyewuchi Akaranta^{2,3} Abosede James ³

¹Materials Physics and Chemistry Research Laboratory, China University of Petroleum, Qingdao, East China.

²African Centre of Excellence in Oilfield Chemicals Research, Institute of Petroleum Studies, University of Port Harcourt, Nigeria.

³Department of Pure and Industrial Chemistry, University of Port Harcourt, Nigeria.

*Corresponding author's email: ebituen@gmail.com

Abstract

Anticorrosion effect of 5-hydroxytryptophan (5-HTP) on mild steel (MS) was investigated by gravimetric and electrochemical techniques. Two different concentrations (1 M and 15 %) of hydrochloric acid were used to simulate well acidizing fluid. Results show that in 10 x 10⁻⁵ M 5-HTP is 96.1% efficient in 1 M HCl and 78.1% efficient in 15 % HCl at 30 °C. The efficiency decreases as temperature increases, reaching 66.9 % and 39.8 % in 1 M and 15 % HCl respectively at 90 °C. When 5-HTP is blended with potassium iodide and glutathione, the efficiency increases to values above 88 % and 78 % in 1 M and 15 % HCl respectively at 90 °C. Increase in 5-HTP concentrations decreases the double layer capacitance and increases charge transfer resistance. 5-HTP behaves as mixed type corrosion inhibitor with anodic predominance and is spontaneously adsorbed on the steel surface. Physisorption of 5-HTP is best described by Langmuir adsorption model and is also exothermic with resultant decrease in entropy of the bulk solution. Results of SEM/EDAX, FTIR and UV-VIS studies support that a protective film forms 5-HTP and MS facilitated by O, N and C=C functionalities.

Keywords: 5-hydroxytryptophan; well acidizing; corrosion inhibitor; EIS; SEM/EDAX, acid corrosion.

1. Introduction

When existing wells deplete and their natural pressure declines, the use of chemistry to maintain production becomes very essential. This is achieved through well stimulation, fracturing, secondary and enhanced oil recovery operations. Well acidizing is a common field

Download English Version:

https://daneshyari.com/en/article/5143491

Download Persian Version:

https://daneshyari.com/article/5143491

Daneshyari.com