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Full-order and multimode flutter analysis using ANSYS
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Abstract

This paper presents the full-order and multimode methods for analyzing coupled flutter of long-span bridges using commercial finite element
(FE) package ANSYS. In the full-order method of flutter analysis, a novel FE model is developed to model the coupled wind-bridge system, in
which a specific user-defined Matrix27 element in ANSYS is adapted to model the aeroelastic forces and its stiffness or damping matrices are
parameterized by wind velocity and vibration frequency. Variation of complex eigenvalues of the coupled system with wind velocity is then
depicted by using this model together with complex eigenvalue analysis, and flutter instability can be determined from the variation diagram. In
the multimode method, equations of motion for the coupled wind-bridge system are first represented using a modal superposition technique. This
formulation leads to a single-parameter searching technique without iteration to determine the conditions of flutter instability when structural
damping is not considered in solution. The contribution of participating modes to flutter instability is given in terms of modal amplitude and
modal energy in the multimode method. Numerical studies are provided to validate the developed methods as well as to demonstrate both
the procedures for flutter analysis using ANSYS. The proposed methods enable the bridge designers and engineering practitioners to analyze
bridge flutter in commercial FE package ANSYS.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Owing to large flexibility and low structural damping, many
flexible and slender structures such as long-span bridges, high-
rise buildings and chimneys are susceptible to a variety of
wind-induced vibrations [1]. Among them, wind-induced flut-
ter instability is the most dangerous one in which the bridge
oscillates in a divergent and destructive manner at some critical
wind velocity. As a result, flutter instability is one of the major
concerns in the design and construction of long-span bridges,
and the lowest wind velocity inducing flutter instability of a
bridge must exceed the maximum design wind velocity of that
bridge. The objective of flutter analysis is to predict the lowest
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critical flutter wind velocity as well as the corresponding flutter
frequency.

Since the collapse of the old Tacoma Narrow Bridge in
1940, considerable efforts have been made to develop pro-
cedures for analyzing coupled flutter of long-span bridges
by integrating finite element (FE) techniques with the flutter
derivatives determined either from Thoedorsen’s theoretical
formulation or from wind tunnel testing. Bleich [2] was among
the first to perform the coupled flutter analysis of suspension
bridges using the theoretical flutter derivatives. The coupled
flutter analysis using the measured flutter derivatives from the
spring-mounted bridge sectional model testing in wind tun-
nel was pioneered by Scanlan and his co-workers [3–5]. At
present there are two general approaches for coupled flutter
analysis of bridges: (i) the full-order flutter analysis approach
where the aeroelastic loadings are applied directly to the
physical coordinate of structures [6–9] and (ii) the multimode
flutter analysis approach where the equations of motion for
structures are represented using a modal superposition tech-
nique [9–19].

http://www.elsevier.com/locate/finel
mailto:cexghua@hotmail.com
mailto:zqchen@hnu.cn


538 X.G. Hua, Z.Q. Chen / Finite Elements in Analysis and Design 44 (2008) 537–551

Since the 1970s a number of commercial FE packages such
as ANSYS, ABAQUS and ADINA have emerged and received
wide applications in various disciplines due to the advancement
of FE methods and computing technologies. These FE pack-
ages have friendly graphical user interface and powerful com-
putational capability. However, the general purpose commercial
FE packages commonly used in civil engineering community
cannot be directly used for flutter analysis of bridges due to
lack of the capability of calculating motion-dependent aeroe-
lastic loads. Although it is possible to develop special purpose
FE packages to tackle bridge flutter analysis such as ANSUSP
[11] and NACS [14], the incorporation of functions or modules
capable of flutter analysis into general purpose commercial FE
packages provides an alternative way.

This paper presents two alternative methods, namely the full-
order method and the multimode method, for analyzing cou-
pled flutter of long-span bridges using ANSYS, with the main
purpose of providing practical tools for researchers and engi-
neering practitioners to analyze bridge coupled flutter problem
using ANSYS. In the development of the first method, the cou-
pled wind-bridge system is first modeled by a hybrid FE model
which incorporates structural FE model with fictitious specific
user-defined Matrix27 elements used to represent the motion-
dependent aeroelastic forces. The stiffness or damping matrices
of Matrix27 element are expressed in terms of wind velocity
and vibration frequency. The complex eigenvalues of the low-
order modes at varying wind velocities are then determined
from this hybrid FE model together with complex eigenvalue
analysis, and the real and imaginary parts of the eigenvalues are
the logarithm decay rates and damped vibration frequencies of
these modes, respectively. Flutter instability will occur when
real part of any eigenvalue becomes positive. While in the mul-
timode method, equations of motion for the structure subjected
to aeroelastic forces are first reformulated with some selected
low-order natural modes. A single-parameter searching tech-
nique without the need of frequency iteration is then described
to determine the critical conditions of flutter instability when
structural damping is not taken into account in solution. Contri-
bution of the selected participating modes to flutter instability
is also provided in terms of modal amplitude and modal energy
in the multimode method. The flutter analysis of both a simply
supported line-like bridge with the theoretical flutter derivatives
and a real suspension bridge with the theoretical and measured
flutter derivatives is carried out to validate the developed pro-
cedures and demonstrate the full-order and multimode flutter
analysis of cable-supported bridges using ANSYS.

2. Full-order flutter analysis

2.1. Novel FE model for flutter analysis

The equations of motion for a bridge in the smooth flow can
be expressed as

MẌ + CẊ + KX = Fae, (1)

where M, C and K are the global mass, damping and stiffness
matrices, respectively; X, Ẋ and Ẍ represent the nodal displace-
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Fig. 1. Aeroelastic forces acting on bridge deck.

ment, velocity and acceleration vectors, respectively; and Fae
denotes the vector of nodal aeroelastic forces.

The motion-dependent aeroelastic forces distributed on unit
span of bridge girder are expressed as a linear function of nodal
displacement and nodal velocity [4,15]
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where � is air mass density; U is wind velocity; B is the width
of bridge deck; K = �B/U is the reduced circular frequency;
h, p and � are the vertical, lateral and torsional displacements,
respectively; A∗

i , H ∗
i and P ∗

i (i = 1, . . . , 6) are flutter deriva-
tives which are expressed in terms of reduced wind velocity
Ũ = U/(fB) and f is the natural frequency. The aeroelastic
forces on bridge deck are illustrated in Fig. 1.

By converting the distributed aeroelastic forces of element e
of bridge girder into equivalent nodal loadings at member ends,
one obtains the equivalent nodal loadings for that element as

Fe
ae = Ke

aeXe + Ce
aeẊe, (3)

where Ke
ae and Ce

ae are the elemental aeroelastic stiffness and
damping matrices for element e, respectively. Similar to the
general procedures in formulating elemental mass matrix, both
a lumped formulation and a consistent formulation can be used
to derive the elemental aeroelastic stiffness and damping ma-
trices [20]. When using the lumped formulation, the elemental
stiffness and damping matrices are
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