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Abstract

The exact solution for the deflection and stresses in an end-loaded cantilever is widely used to demonstrate the capabilities of adaptive
procedures, in finite elements, meshless methods and other numerical techniques. In many cases, however, the boundary conditions necessary to
match the exact solution are not followed. Attempts to draw conclusions as to the effectivity of adaptive procedures is therefore compromised.
In fact, the exact solution is unsuitable as a test problem for adaptive procedures as the perfect refined mesh is uniform. In this paper we discuss
this problem, highlighting some errors that arise if boundary conditions are not matched exactly to the exact solution, and make comparisons
with a more realistic model of a cantilever. Implications for code verification are also discussed.
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1. Introduction

Adaptive methods are well-established for analysis of elas-
tostatic problems using finite elements and are now emerging
for meshless methods. Many publications in this area measure
the capability of adaptive procedures by comparison with the
limited number of exact solutions which exist. One of these
problems is that of a cantilever subjected to end loading [1].
The purpose of this paper is to highlight potential sources of
error in the use of this solution relating to the particular bound-
ary conditions assumed and to show that it is a solution nei-
ther appropriate for testing adaptivity nor as a model of a real
cantilever.

While some may consider that the observations we make
are self-evident and well-known, the literature contains many
counter examples. This paper provides graphic illustration of
the effect of various boundary conditions on the cantilever
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beam solution. To our knowledge these effects have not been
presented in detail in the existing literature. We also demon-
strate the difference between the behaviour of a real cantilever
and the idealised Timoshenko cantilever. It is our hope that this
paper will help to reduce the misuse of the Timoshenko can-
tilever beam in the evaluation of adaptive analysis schemes, and
perhaps encourage the use of a more realistic cantilever beam
model as a benchmark problem instead.

2. Problem definition

Fig. 1 shows a cantilever beam of depth D, length L and
unit thickness, which is fully fixed to a support at x =0 and
carries an end load P. Timoshenko and Goodier [1] show that
the stress field in the cantilever is given by

o= LT, ()
ayy =0, (2)
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wETor e Y


http://www.elsevier.com/locate/finel
mailto:charles.augarde@dur.ac.uk
mailto:deeks@civil.uwa.edu.au

596 C.E. Augarde, A.J. Deeks / Finite Elements in Analysis and Design 44 (2008) 595-601

AN
7
~<

NN

A

-

Fig. 1. Coordinate system for the cantilever problem.

and the displacement field {u,, uy} is given by

_ Py B , D?

uy == |:(6L 3x)x + (24 ) [y e H )
L e e 5)—D2x BL-x)x*|, (3

uy——6EI[vy — X)+(4+ov 1 + —xx],

where E is Young’s modulus, v is Poisson’s ratio and / is the
second moment of area of the cross-section.

Crucially [1] states that “ ... it should be noted that this
solution represents an exact solution only if the shearing forces
on the ends are distributed according to the same parabolic law
as the shearing stress 17, and the intensity of the normal forces
at the built-in end is proportional to y.”

If this is ignored then the solution given by Egs. (1)-(5) is
incorrect for the ends of the cantilever.

The solution has been widely used to demonstrate adaptive
procedures in finite element methods (e.g. [2—4]), boundary el-
ements (e.g. [5]) and (most commonly) meshless methods (e.g.
[6-12]). However, inspection of Egs. (1)—(5) shows the stresses
to be smooth functions of position, with no stress concentra-
tions or singularities. Therefore, it would not appear to be a
suitable test for an adaptive procedure where a uniform mesh
or grid is refined to improve accuracy locally to areas of high
gradients in field quantities. Any analysis that yields a non-
smooth field for this problem (and there are many examples in
the literature on adaptivity) is an analysis of a cantilever under
different boundary conditions, for which the exact solution is
incorrect.

The performance of an adaptive procedure is widely mea-
sured using the effectivity index 6 which is defined for a refined
mesh (or grid) as

o=", ©)

n

where 7 is the error estimate based on the difference between
the solution from the fine mesh the coarse mesh, and n* is the
error estimate based on the difference between the exact solu-
tion and the coarse mesh [2]. The effectivity index 0 for the
cantilever problem is meaningless unless the boundary condi-
tions are modelled as specified in [1].

3. Analysis of the Timoshenko and Goodier cantilever

It is not possible to model the cantilever in [1] using
finite elements by applying the stated traction boundary con-
ditions only. In that case the problem is unstable as there is an
unrestrained rotational rigid-body mode. Instead stability and
an accurate model can be achieved by imposing the load as
a parabolically varying shear force at each end according to
Eq. (3) and by applying essential boundary conditions at the
“fixed end” according to Eqgs. (4) and (5).

To demonstrate the effects of using different boundary con-
ditions five adaptive analyses of cantilevers have been carried
out. The boundary conditions for each analysis are shown in
Fig. 2 and have been chosen to match the conditions used in var-
ious previous publications. In analysis A full-fixity is applied to
the nodes at the support, while the load P is applied uniformly
distributed over the vertical surface at x = L, e.g. Refs. [2,13].
In analysis B the load is instead distributed parabolically, e.g.
[6]. In analysis C, fixity at the support is released via rollers
above and below the fixed mid-point, e.g. [14—-16]. In analysis
D traction boundary conditions are applied at x =0 to the can-
tilever of analysis C. Finally, analysis E includes parabolic vari-
ation of applied shear traction at x = L with essential boundary
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Fig. 2. The five different cantilever problems analysed.
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