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a b s t r a c t

Accuracy and efficiency are significant factors in wave propagation and load identification of mechanical
structure. By introducing modified Hermitian cubic spline wavelets on interval (HCSWI), a multi-scale
wavelet-based numerical method is proposed. The present method can avoid the boundary problem of
the original Hermitian interpolation wavelet. A modified Hermitian interpolation wavelet base can get
transformation matrix, so the modified Hermitian wavelet finite element is proposed in this paper.
Positive question-wave propagation and inverse question-load identification is verified by this means.
The modified Hermitian wavelet finite element involves wave propagation and load identification in rod
and Timoshenko beam which are obtained and then compared with results calculated by traditional
finite element method (TFEM) and B-spline wavelet on interval (BSWI) finite element. The results
indicate that the present method for wave propagation and load identification has higher precision and
costs less time on mechanical structure.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Wave propagation and load identification are the key subjects of
intensive investigations in mechanical engineering over the years
[1,2]. Wave propagation techniques providing an efficient and
accurate procedure have been of great interest to many researchers
in mechanical structures [3–5]. However, a so-called “short wave
problem” for finite element based techniques becomes one of the
biggest obstacles which must be overcome [6]. Zienkiewicz and
Taylor noticed the “rule of thumb” that there should be at least 10
nodes per wave length [6]. Babuska et al. found an effect called
“pollution error”, which makes even more astronomical computing
requirements than that of the “rule of thumb” [7,8]. Thus, accuracy
and efficiency are importantly and greatly required for finite
element techniques when they are used in high frequency wave
propagation simulation [9]. Manktelow et al. pointed out that
nonlinear dispersion through an integrated commercial software
environment which enables exploration and optimization of
geometrically-complex structures [10]. Pahlavan et al. presented a
novel and generic formulation of the wavelet-based spectral finite
element approach, which is applicable to elastic wave propagation
problems [11]. Yang et al. analyzed elastic wave propagation in
arches using a B-spline wavelet on interval finite element [12].

Accurate and reliable data on mechanical structure loads are
highly necessary not only to design and development but also to
strength and rigidity specifications for mechanical structures [13].
But due to the complexity of structure and loading conditions, a
traditional way of obtaining the applied force from direct mea-
surement may not always be possible because of difficulties in
sensor placement or other practical problems [14]. Rowley
described the solved loads from measured responses based on
moving force identification algorithm [15]. Therefore, it is crucial
to study proper algorithm with load identification. Maes et al.
presented an analytical method to estimate the axial force in a
beam member. The method accounts for bending stiffness effects
and for the rotational inertia and shear deformation of the beam
member [16]. Li et al. used system characteristics and responses to
calculate loads, which are based on wavelet multi-resolution
analysis [17]. Gupta presented a time domain technique for
estimating dynamic loads acting on a structure from strain time
response [18].

Finite element method (FEM) has been playing an important
role in many engineering fields. Wave propagation and load
identification techniques adapting to more complex structures
became possible and available because of the use of Finite element
method [19]. However, for many complicated problems, TFEM has
some disadvantages, such as low efficiency, insufficient accuracy,
slow convergence to correct solutions etc. Recently, wavelets have
been applied to obtain representations of integral and differential
operators in many physical problems [20,21]. And because wave-
lets have the properties of multi-resolution analysis, they provide
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a natural mechanism for decomposing the solution into a set of
coefficients. Wavelet analysis numerical methods can be viewed as
those interpolating functions, similar to those used in signal and
image processing. Basu indicated that the finite difference and
Ritz-type methods had been largely replaced by the FEM, the
boundary element method, the meshless method, and in the near
future it might be the turn for the wavelet-based numerical
method [22]. Since B-spline wavelets have explicit expressions,
high degree of accuracy and high efficiency, numerous researchers
focus on the B-spline wavelet on interval (BSWI) finite element
method [23,24]. But compared with BSWI, which is formed to
recalculate the function to improve the precision of the new scales
from the original scale function, HCSWI, however, has prominent
advantages of improving the precision by adding the appropriate
wavelet function. Based on modified HCSWI, this paper presents a
multi-scale wavelet-based numerical method, a modified Hermi-
tian interpolation wavelet base, avoiding the boundary problem of
the original Hermitian interpolation wavelet [25], and proposing
the modified Hermitian wavelet finite element.

In the present work, an effective wavelet numerical method is
proposed based on wavelet bases of modified Hermitian cubic
spline wavelets on interval [26] to analyze wave propagation and
load identification of rod and beam. For the orthogonal character-
istic of the wavelet bases with respect to the given inner product,
the corresponding multi-scale solution equation will be decoupled
across levels totally or partially and it suits for the nesting
approximation. Some numerical examples indicate that the pro-
posed method has better precision in analyzing mechanical
structure [27].

2. Hermitian cubic splines on interval

Wang constructed cubic spline wavelet bases in Sobolev spaces
in 1996 [28] and orthogonal multi-wavelets were constructed by
Donovan et al. [29]. By L2(R), the linear space of all square-
integrable real-valued functions is denoted on R. The inner
product in L2(R) is defined as

〈u; v〉 : ¼
Z
R
uðxÞvðxÞdx; u; vAL2ðRÞ

If /u,vS¼0, then u and v are regarded to be orthogonal. The
norm of a function f in L2(R) is given by J f 2 J : ¼

ffiffiffiffiffiffiffiffiffiffi
〈f ; f 〉

p
. Let ϕ1 and

ϕ2 be the cubic splines supported on interval [�1, 1], they are
given by

ϕ1ðxÞ : ¼
ðxþ1Þ2ð1�2xÞ for xA ½�1;0�
ð1�xÞ2ð1þ2xÞ for xA ½0;1�
0 for x=2½�1;1�

8><
>: ð1Þ

and

ϕ2ðxÞ : ¼
ðxþ1Þ2x for xA ½�1;0�
ðx�1Þ2x for xA ½0;1�
0 for x=2½�1;1�

8><
>: ð2Þ

The graphs of ϕ1 and ϕ2 are depicted in Fig. 1. Clearly, both ϕ1

and ϕ2 belong to C1(R). The main reason for choosing these two
spline functions to generate wavelets is that the corresponding
wavelets would be equipped with the capability of orthogonal
with respect to the inner product /u0,v0S (i.e. /u0,v0S¼0), and this
is the main integral term of the numerical method to analyze
mechanical structure. Therefore, the multi-scale solution equation
will be decoupled accordingly.

Heil et al. considered the possibility of construction of wavelets
on the basis of Hermite cubic splines [30]. Dahmen et al. con-
structed biorthogonal multi-wavelets on the basis of the Hermite

cubic splines ϕ1 and ϕ2 [31]. These wavelets were adapted to the
interval [0, 1]. However, their construction for the wavelet basis on
interval [0, 1] was quite complicated. Jia et al. constructed wavelet
bases of Hermite cubic splines [26]. The corresponding wavelets ψ1
and ψ2 supported on interval [�1, 1] are

ψ1ðxÞ ¼ �2ϕ1ð2xþ1Þþ4ϕ1ð2xÞ�2ϕ1ð2x�1Þ�21ϕ2ð2xþ1Þþ21ϕ2ð2x�1Þ
ψ2ðxÞ ¼ ϕ1ð2xþ1Þ�ϕ1ð2x�1Þþ9ϕ2ð2xþ1Þþ12ϕ2ð2xÞþ9ϕ2ð2x�1Þ

(

ð3Þ

They satisfy the conditions ψ 0
1;ϕ

0
mðd� jÞ� �¼ ψ 0

2;ϕ
0
mðd� jÞ� �¼ 0;

m¼ 1;2; 8 jAZ, where symbols d and j denote arbitrary variable
and shift parameter, respectively. The shifts of ψ1 and ψ2 generate
the wavelet space W. Fig. 2 shows the graphic of ψ1 and ψ2.
Obviously, ψ1 is symmetric and ψ2 is anti-symmetric.

The above-mentioned wavelets can generate a wavelet basis for
the space H1

0ð0;1Þ. Therefore, the following decomposition of
H1

0ð0;1Þ are

H1
0ð0;1Þ ¼ V1 _þW1 _þW2 _þ⋯ ð4Þ

where _þ denotes direct sum, V1 is the initial scaling space, and Wj

(j¼1, 2, …) is the wavelet space at the different level.
The scaling functions ϕ1,k (Fig. 3) are

ϕ1;1ðxÞ : ¼
ffiffiffiffiffi
5
24

q
ϕ1ð2x�1Þ

ϕ1;2ðxÞ : ¼
ffiffiffiffiffi
15
4

q
ϕ2ð2xÞ

ϕ1;3ðxÞ : ¼
ffiffiffiffiffi
15
8

q
ϕ2ð2x�1Þ

ϕ1;4ðxÞ : ¼
ffiffiffiffiffi
15
4

q
ϕ2ð2x�2Þ

8>>>>>>>>><
>>>>>>>>>:

ð5Þ

Due to the boundary problem, Hermitian interpolation wavelet
base cannot get transformation matrix, so it cannot be used as
finite element interpolation function independently. A modified
Hermitian scaling function is presented in this paper, so as to
interpolate the field functions in wavelet finite element, and this
modified Hermitian scaling function retains all kinds of the good
performance of Hermitian wavelet.

The modified scaling functions ϕ0
1;k are

ϕ1;1ðxÞ : ¼
ffiffiffiffiffi
5
24

q
ϕ1ð2xÞ

ϕ1;2ðxÞ : ¼
ffiffiffiffiffi
5
24

q
ϕ1ð2x�1Þ

ϕ1;3ðxÞ : ¼
ffiffiffiffiffi
15
4

q
ϕ2ð2xÞ

ϕ1;4ðxÞ : ¼
ffiffiffiffiffi
15
8

q
ϕ2ð2x�1Þ

ϕ1;5ðxÞ : ¼
ffiffiffiffiffi
15
4

q
ϕ2ð2x�2Þ

ϕ1;6ðxÞ : ¼
ffiffiffiffiffi
5
24

q
ϕ1ð2x�2Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð6Þ

and the wavelets ψj,k are

ψ j;kðxÞ : ¼ 2� j=2ffiffiffiffiffiffiffiffiffi
729:6

p ψ1 2jx� k
2

� �
for k¼ 2;4;…;2jþ1�2

ψ j;kðxÞ : ¼ 2� j=2ffiffiffiffiffiffiffiffiffi
153:6

p ψ2 2jx�k�1
2

� �
for k¼ 3;5;…;2jþ1�1

ψ j;1ðxÞ : ¼ 2� j=2ffiffiffiffiffiffiffi
76:8

p ψ2ð2jxÞ
ψ j;2jþ 1 ðxÞ : ¼ 2� j=2ffiffiffiffiffiffiffi

76:8
p ψ2ð2jx�2jÞ

8>>>>>>>><
>>>>>>>>:

ð7Þ

All the modified scaling functions ϕ0
1;k and wavelets functions

ψj,k on interval [0, 1] are shown in Figs. 4 and 5. The special
properties of wavelet bases of HCSWI are

〈ðϕ0
1;kÞ0;ψ 0

j;k〉¼
Z 1

0
ðϕ0

1;kÞ0ψ 0
j;k dx¼ 0 for all j and k ð8Þ
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