Organic Electronics 47 (2017) 133-138

Contents lists available at ScienceDirect

Organic Electronics

journal homepage: www.elsevier.com/locate/orgel

Letter

Enhancing the performance of non-fullerene solar cells with polymer acceptors containing large-sized aromatic units

CrossMark

Yaping Yu ^{a, b}, Shichao Zhou ^{a, b}, Xiaohui Wang ^c, Cheng Li ^b, Guitao Feng ^b, Yonggang Wu ^{a, **}, Wei Ma ^{c, ***}, Weiwei Li ^{b, *}

^a College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China

^b Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing,

10090, China

^c State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China

ARTICLE INFO

Article history: Received 21 March 2017 Received in revised form 18 April 2017 Accepted 6 May 2017 Available online 10 May 2017

Keywords: Polymer solar cells Conjugated polymer Non-fullerene Diketopyrrolopyrrole Benzodithiophene

ABSTRACT

In this work, we develop four diketopyrrolopyrrole-based polymer acceptors for application in polymerpolymer solar cells. The polymer acceptors contain different-sized aromatic units, from small thiophene to benzodithiophene and large alkylthio-benzodithiophene units. Although the polymer acceptor with large-sized groups shows small LUMO offset and low energy loss when blended with the donor polymer PTB7-Th, the corresponding solar cells can achieve a high power conversion efficiency (PCE) of 3.1% due to high photocurrent. In contrast, the polymer acceptor with small thiophene units only provides a low PCE of 0.14% in solar cells. These results indicate that polymer acceptors with large-sized aromatic units can be potentially used into high performance non-fullerene solar cells.

© 2017 Elsevier B.V. All rights reserved.

Since poly(phenylene vinylene)s based donor/acceptor heterojunction solar cells were reported at 1995 [1,2], polymer-polymer solar cells that use conjugated polymers both as electron donor and electron acceptor have been intensively studied in the last decades [3-5]. The power conversion efficiencies (PCEs) over 8% have been achieved, partially due to the vast amount of polymer donors and acceptors developed in recent years [6–10]. The PCEs are still relatively low compared to fullerene-based [11] or nonfullerene small molecules-based solar cells with PCEs around 12% [10,12–17], remaining much room to be improved. Conjugated polymers with long conjugated backbone show structural complexity due to the strong intra- and inter-molecular interaction. Therefore, bulk-heterojunction (BHJ) systems based on binary conjugated polymers show complicate micro-phase separation that relates to charge generation in solar cells [18]. It is a challenging task to design conjugated polymer acceptors in order to understand the relation between chemical structures and BHJ morphology, consequently realizing high performance polymer-polymer solar cells.

Conjugated polymers with different-sized alternating building blocks, such as small thiophene, medium benzothiophene and large benzodithiophene (BDT), exhibit distinct photovoltaic performance due to their aggregated properties. For example, a diketopyrrolopyrrole (DPP) based conjugated polymer containing BDT units show low solubility compared to its analogical polymer copolymerized with thiophene [19]. As a result, DPP-BDT based polymer as electron donor was found to form small fibrillar structures (diameter < 10 nm) when blended with a fullerene derivative, resulting in a PCE of 6.9% in solar cells due to efficient exciton diffusion into the interface of donor/acceptor. In contrast, thiophene-contained polymer exhibited large fibrillar structures (diameter ~ 30 nm) in blended thin films and showed PCEs below 5% in solar cells. The size of aromatic units can be further extended by using two-dimensional strategy, which has been widely used to design conjugated polymers as electron donor [20,21]. By attaching alkylthiophene units onto BDT, BDT-polymers show the advantage of aligned energy levels, broad absorption and orientated selfassembly (such as ordered π - π stacking), and hence provide high

^{*} Corresponding author.

^{**} Corresponding author.

^{***} Corresponding author.

E-mail addresses: wuyonggang@hbu.edu.cn (Y. Wu), msewma@xjtu.edu.cn (W. Ma), liweiwei@iccas.ac.cn (W. Li).

photocurrent and PCEs in solar cells [17,20,22–25]. The twodimensional structures were also used to design non-fullerene small molecules, such as a well-known acceptor ITIC developed by Zhan et al. with a large indacenodithiophene central unit [26]. This ensured ITIC to have large π -conjugated units for charge transportation and highly steric hindrance to prevent selfaggregation, partially explaining high performance ITIC-based solar cells [15]. From these aspects, we speculate that conjugated polymer acceptors bearing large copolymerized groups can improve the device performance in polymer-polymer solar cells, but they have been rarely reported [27,28].

In this work, we are interested with exploring conjugated polymer acceptors containing different-sized aromatic units and studying their effect on the photovoltaic performance. The polymer acceptors consist of DPP as core and electron-negative thiazole as bridges in order to reduce the frontier energy levels [29]. The aromatic units, from thiophene to BDT, alkylthiophene-BDT and alkylthiothiophene-BDT [30,31], were incorporated into the polymers, as shown in Fig. 1. These polymers perform near-infrared absorption spectra and low-lying energy levels. The polymers as electron acceptor were applied into polymer solar cells, in which P1 showed the lowest PCEs of 0.14%, but P2, P3 and P4 with large-sized aromatic units exhibited PCEs of 1.1%, 2.4% and 3.1%. The results confirm that the design by introducing large aromatic units into polymer acceptors is an efficient way to improve the photovoltaic performance of polymer-polymer solar cells.

The DPP-polymers P1-P4 were synthesized via Stille polymerization by using Pd₂(dba)₃/PPh₃ as catalyst and toluene/DMF as solvent. P1 and P2 were prepared according to the literature [32,33]. Synthetic procedures of P3 and P4 were shown in Scheme S1, Supporting Information (SI). Thiazole-bridged DPP monomers bear different side chains, such as 2'-butyloctyl (BO) for P3, 2'octvldodecvl for P1 and P4 and 2'-decvltetradecvl for P2. It is worth noting that when using short BO or 2'-hexyldecyl side chains, the polymer P4 is completely insoluble in CHCl₃ or chlorobenzene, indicating that P4 with alkylthiol groups has strong aggregation tendency. All the polymers showed good solubility in CHCl₃. The molecular weight of the polymers was determined by using gel permeation chromatography (GPC) measurement under a high temperature of 140 °C, as shown in Figs. S1–2 (SI) and the data was summarized at Table 1. The polymers showed high weight average molecular weight (M_w) of 169–324 kg mol⁻¹, in which the polydispersity index (PDI) of P3 and P4 was relatively high (7.5 and 5.8). This is possibly due to small molecular weight fractions (Fig. S1-2, SI).

Optical absorption spectra of P1-P4 and the donor polymer PTB7-Th [34] in thin films were shown in Fig. 2 and the data was summarized at Table 1. These polymers performed near-infrared absorption with optical band gap (E_g) of 1.44–1.61 eV. The polymer P1 with small thiophene unit exhibited broad absorption in the range of 300–900 nm, while P2 – P4 with large-sized aromatic units performed blue-shifted absorption.

Fig. 1. Chemical structures of the conjugated polymer acceptors P1 - P4 in this work.

Table 1
Optical and electrochemical properties of the DPP polymers

Polymer	$M_{\rm w}^{\rm a}$ (kg mol ⁻¹)	PDI	$E_{\rm g}^{\rm film}~({\rm eV})$	$E_{\rm HOMO}^{\rm b} (\rm eV)$	$E_{\rm LUMO}^{\rm c} (\rm eV)$	$\Delta E_{\rm HOMO}^{\rm d}$ (eV)	$\Delta E_{\rm LUMO}^{\rm e} (\rm eV)$
PTB7-Th	_	_	1.61	-5.40	-3.97	_	_
P1	207	2.8	1.44	-5.70	-4.26	0.30	0.47
P2	324	3.8	1.53	-5.71	-4.18	0.31	0.39
P3	256	7.5	1.53	-5.69	-4.16	0.29	0.37
P4	169	5.8	1.58	-5.67	-4.09	0.27	0.3

^a Determined with GPC at 140 °C using *o*-DCB as the eluent.

^b Determined using a work function value of -4.8 eV for Fc/Fc⁺.

^c Determined as $E_{\text{HOMO}} + E_{\text{g}}^{\text{film}}$.

^d $\Delta E_{\text{HOMO}} = E_{\text{HOMO}} (\text{PTB7-Th}) - E_{\text{HOMO}} (\text{polymer}).$

^e $\Delta E_{\text{LUMO}} = E_{\text{LUMO}} (\text{PTB7-Th}) - E_{\text{LUMO}} (\text{polymer}).$

Download English Version:

https://daneshyari.com/en/article/5144117

Download Persian Version:

https://daneshyari.com/article/5144117

Daneshyari.com